ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 5 задач
Версия для печати
Убрать все задачи

Винни-Пух и Пятачок поделили между собой торт. Пятачок захныкал, что ему досталось мало. Тогда Пух отдал ему треть своей доли. От этого у Пятачка количество торта увеличилось втрое. Какая часть торта была вначале у Пуха и какая у Пятачка?

Вниз   Решение


Боковая сторона трапеции равна одному основанию и вдвое меньше другого.
Докажите, что вторая боковая сторона перпендикулярна одной из диагоналей трапеции.

ВверхВниз   Решение


Найдите высоту и радиус основания цилиндра наибольшего объёма, вписанного в сферу радиуса R .

ВверхВниз   Решение


На лужайке босоногих мальчиков столько же, сколько обутых девочек. Кого на лужайке больше — девочек или босоногих детей?

ВверхВниз   Решение


Верно ли, что любой пятиугольник лежит по одну сторону от не менее чем двух своих сторон?

Вверх   Решение

Задачи

Страница: 1 2 3 4 5 6 7 >> [Всего задач: 35]      



Задача 35709

Темы:   [ Невыпуклые многоугольники ]
[ Разрезания на части, обладающие специальными свойствами ]
Сложность: 2+
Классы: 7,8,9

Существуют ли несколько невыпуклых многоугольников, из которых можно составить выпуклый?
Прислать комментарий     Решение


Задача 107754

Темы:   [ Невыпуклые многоугольники ]
[ Пятиугольники ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 2+
Классы: 7,8,9

Существует ли невыпуклый пятиугольник, никакие две из пяти диагоналей которого не имеют общих точек (кроме вершин)?
Прислать комментарий     Решение


Задача 58146

Тема:   [ Невыпуклые многоугольники ]
Сложность: 3
Классы: 9,10

Верно ли, что любой пятиугольник лежит по одну сторону от не менее чем двух своих сторон?
Прислать комментарий     Решение


Задача 103758

Темы:   [ Невыпуклые многоугольники ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3
Классы: 7,8,9

Может ли горящая в комнате свеча не освещать полностью ни одну из её стен, если в комнате а) 10 стен, б) 6 стен?

Прислать комментарий     Решение


Задача 65159

Темы:   [ Невыпуклые многоугольники ]
[ Деление с остатком ]
Сложность: 3+
Классы: 8,9

Секретная база окружена прозрачным извилистым забором в форме невыпуклого многоугольника, снаружи – болото. Через болото проложена прямая линия электропередач из 36 столбов, часть из которых стоит снаружи базы, а часть – внутри. (Линия электропередач не проходит через вершины забора.) Шпион обходит базу снаружи вдоль забора так, что забор всё время по правую руку от него. Каждый раз, оказавшись на линии электропередач, он считает, сколько всего столбов находится по левую руку от него (он их все видит). К моменту, когда шпион обошёл весь забор, он насчитал в сумме 2015 столбов. Сколько столбов находится внутри базы?

Прислать комментарий     Решение

Страница: 1 2 3 4 5 6 7 >> [Всего задач: 35]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .