ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 5 задач
Версия для печати
Убрать все задачи

Прямые A2B2 и A3B3, A3B3 и A1B1, A1B1 и A2B2 пересекаются в точках P1, P2, P3 соответственно.
а) Докажите, что описанные окружности треугольников A1A2P3, A1A3P2 и A2A3P1 пересекаются в одной точке, лежащей на окружности подобия отрезков A1B1, A2B2 и A3B3.
б) Пусть O1 — центр поворотной гомотетии, переводящей отрезок A2B2 в отрезок A3B3; точки O2 и O3 определяются аналогично. Докажите, что прямые P1O1, P2O2 и P3O3 пересекаются в одной точке, лежащей на окружности подобия отрезков A1B1, A2B2 и A3B3.

Вниз   Решение


Автор: Назаров Ф.

Четырёхугольник ABCD вписанный, M – точка пересечения прямых AB и CD, N – точка пересечения прямых BC и AD. Известно, что  BM = DN.
Докажите, что  CM = CN.

ВверхВниз   Решение


Автор: Фольклор

В равнобокой трапеции AВСD основания AD и ВС равны 12 и 6 соответственно, а высота равна 4. Сравните углы ВАС и САD.

ВверхВниз   Решение


В параллелограмме ABCD точки M и N – середины сторон BC и CD соответственно. Могут ли лучи AM и AN делить угол BAD на три равные части?

ВверхВниз   Решение


Докажите, что площадь любого выпуклого четырехугольника не превосходит полусуммы произведений противоположных сторон.

Вверх   Решение

Задачи

Страница: 1 2 >> [Всего задач: 8]      



Задача 57882

Тема:   [ Симметриия и неравенства и экстремумы ]
Сложность: 3
Классы: 9

На биссектрисе внешнего угла C треугольника ABC взята точка M, отличная от C. Докажите, что MA + MB > CA + CB.
Прислать комментарий     Решение


Задача 57883

Тема:   [ Симметриия и неравенства и экстремумы ]
Сложность: 3
Классы: 9

В треугольнике ABC проведена медиана AM. Докажите, что 2AM$ \ge$(b + c)cos($ \alpha$/2).
Прислать комментарий     Решение


Задача 57884

Тема:   [ Симметриия и неравенства и экстремумы ]
Сложность: 3
Классы: 9

Вписанная окружность треугольника ABC касается сторон AC и BC в точках B1 и A1. Докажите, что если AC > BC, то AA1 > BB1.
Прислать комментарий     Решение


Задача 57885

Тема:   [ Симметриия и неравенства и экстремумы ]
Сложность: 4
Классы: 9

Докажите, что площадь любого выпуклого четырехугольника не превосходит полусуммы произведений противоположных сторон.
Прислать комментарий     Решение


Задача 57886

Тема:   [ Симметриия и неравенства и экстремумы ]
Сложность: 4
Классы: 9

Дана прямая l и две точки A и B по одну сторону от нее. Найдите на прямой l точку X так, чтобы длина ломаной AXB была минимальна.
Прислать комментарий     Решение


Страница: 1 2 >> [Всего задач: 8]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .