ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 4 задачи
Версия для печати
Убрать все задачи

На катетах и гипотенузе прямоугольного треугольника построены квадраты, расположенные вне треугольника. Вычислить площадь шестиугольника, вершины которого совпадают с теми вершинами квадратов, которые не принадлежат данному треугольнику. Длина гипотенузы c и сумма длин катетов s известны.

Вниз   Решение


Каждая сторона правильного треугольника разбита на n равных отрезков, и через все точки деления проведены прямые, параллельные сторонам. Данный треугольник разбился на n² маленьких треугольников-клеток. Треугольники, расположенные между двумя соседними параллельными прямыми, образуют полоску.
  а) Какое наибольшее число клеток можно отметить, чтобы никакие две отмеченные клетки не принадлежали одной полоске ни по одному из трёх направлений, если  n = 10?
  б) Тот же вопрос для  n = 9.

ВверхВниз   Решение


Окружность касается стороны BC треугольника ABC в её середине M, проходит через точку A, а отрезки AB и AC пересекает в точках D и E соответственно. Найдите угол A, если известно, что  BC = 12,  AD = 3,5  и  EC = .

ВверхВниз   Решение


Вписанная окружность треугольника ABC касается сторон AC и BC в точках B1 и A1. Докажите, что если AC > BC, то AA1 > BB1.

Вверх   Решение

Задачи

Страница: << 8 9 10 11 12 13 14 >> [Всего задач: 1029]      



Задача 57882

Тема:   [ Симметриия и неравенства и экстремумы ]
Сложность: 3
Классы: 9

На биссектрисе внешнего угла C треугольника ABC взята точка M, отличная от C. Докажите, что MA + MB > CA + CB.
Прислать комментарий     Решение


Задача 57883

Тема:   [ Симметриия и неравенства и экстремумы ]
Сложность: 3
Классы: 9

В треугольнике ABC проведена медиана AM. Докажите, что 2AM$ \ge$(b + c)cos($ \alpha$/2).
Прислать комментарий     Решение


Задача 57884

Тема:   [ Симметриия и неравенства и экстремумы ]
Сложность: 3
Классы: 9

Вписанная окружность треугольника ABC касается сторон AC и BC в точках B1 и A1. Докажите, что если AC > BC, то AA1 > BB1.
Прислать комментарий     Решение


Задача 57888

Тема:   [ Композиции симметрий ]
Сложность: 3
Классы: 9

а) Прямые l1 и l2 параллельны. Докажите, что Sl1oSl2 = T2a, где  Ta — параллельный перенос, переводящий l1 в l2, причем a $ \perp$ l1.
б) Прямые l1 и l2 пересекаются в точке O. Докажите, что Sl2oSl1 = R2$\scriptstyle \alpha$O, где  R$\scriptstyle \alpha$O — поворот, переводящий l1 в l2.
Прислать комментарий     Решение


Задача 57897

Тема:   [ Свойства симметрий и осей симметрии ]
Сложность: 3
Классы: 9

Точка A расположена на расстоянии 50 см от центра круга радиусом 1 см. Разрешается отразить точку симметрично относительно любой прямой, пересекающей круг. Докажите, что: а) за 25 отражений точку A можно к загнатьк внутрь данного круга; б) за 24 отражения этого сделать нельзя.
Прислать комментарий     Решение


Страница: << 8 9 10 11 12 13 14 >> [Всего задач: 1029]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .