ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 2 задачи
Версия для печати
Убрать все задачи

Докажите, что при гомотетии окружность переходит в окружность.

Вниз   Решение


  а) В Стране Чудес есть три города A, B и C. Из города A в город B ведет 6 дорог, а из города B в город C – 4 дороги.
Сколькими cпособами можно проехать от A до C?
  б) В Стране Чудес построили еще один город D и несколько новых дорог – две из A в D и две из D в C.
Сколькими способами можно теперь добраться из города A в город C?

Вверх   Решение

Задачи

Страница: 1 2 >> [Всего задач: 10]      



Задача 57903

Тема:   [ Композиции движений. Теорема Шаля ]
Сложность: 5
Классы: 9

Докажите, что любое движение плоскости является композицией не более чем трех симметрий относительно прямых.
Прислать комментарий     Решение


Задача 57904

Тема:   [ Композиции движений. Теорема Шаля ]
Сложность: 5
Классы: 9

Докажите, что любое движение первого рода является поворотом или параллельным переносом.
Прислать комментарий     Решение


Задача 57905

Тема:   [ Композиции движений. Теорема Шаля ]
Сложность: 5
Классы: 9

Докажите, что любое движение второго рода является скользящей симметрией.
Прислать комментарий     Решение


Задача 57906

Тема:   [ Композиции движений. Теорема Шаля ]
Сложность: 5
Классы: 9

Докажите, что композицию чётного числа симметрий относительно прямых нельзя представить в виде композиции нечётного числа симметрий относительно прямых.
Прислать комментарий     Решение


Задача 57907

Тема:   [ Композиции движений. Теорема Шаля ]
Сложность: 6
Классы: 9

Дан треугольник ABC. Докажите, что композиция симметрий S = SACoSABoSBC является скользящей симметрией, для которой вектор переноса имеет длину 2R sin$ \alpha$sin$ \beta$sin$ \gamma$, где R — радиус описанной окружности, $ \alpha$, $ \beta$, $ \gamma$ — углы данного треугольника.
Прислать комментарий     Решение


Страница: 1 2 >> [Всего задач: 10]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .