ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 9 задач
Версия для печати
Убрать все задачи

Дана трапеция ABCD с основаниями  AD = 3  и  BC = 18.  Точка M расположена на диагонали AC, причём  AM : MC = 1 : 2.  Прямая, проходящая через точку M параллельно основаниям трапеции, пересекает диагональ BD в точке N. Найдите MN.

Вниз   Решение


При каком наименьшем $n$ для любого набора $A$ из $2007$ множеств найдется такой набор $B$ из $n$ множеств, что каждое множество набора $A$ является пересечением двух различных множеств набора $B$?

ВверхВниз   Решение


Имя входного файла:

stalker.in

Имя выходного файла:

stalker.out

Максимальное время работы на одном тесте:

2 секунды

Максимальный объем используемой памяти:

128 мегабайт

   

В городе Н при невыясненных обстоятельствах территория одного из заводов превратилась в аномальную зону. Все подъезды к территории были перекрыты, а сама она получила название промзоны. В промзоне находятся N зданий, некоторые из них соединены дорогами. По любой дороге можно перемещаться в обоих направлениях.

Начинающий сталкер получил задание добраться до склада в промзоне. Он нашел в электронном архиве несколько карт территории промзоны. Так как карты составлялись разными людьми, то на каждой из них есть информация только о некоторых дорогах промзоны. Одна и та же дорога может присутствовать на нескольких картах.

В пути сталкер может загружать из архива на мобильный телефон по одной карте. При загрузке новой карты предыдущая в памяти телефона не сохраняется. Сталкер может перемещаться лишь по дорогам, отмеченным на карте, загруженной на данный момент. Каждая загрузка карты стоит 1 рубль. Для минимизации расходов сталкеру нужно выбрать такой маршрут, чтобы как можно меньшее число раз загружать карты. Сталкер может загружать одну и ту же карту несколько раз, при этом придется заплатить за каждую загрузку. Изначально в памяти мобильного телефона нет никакой карты.

Требуется написать программу, которая вычисляет минимальную сумму расходов, необходимую сталкеру, чтобы добраться от входа в промзону до склада.

Формат входных данных

В первой строке входного файла находятся два натуральных числа N и K (2 ≤ N ≤ 2000; 1 ≤ K ≤ 2000) - количество зданий промзоны и количество карт соответственно. Вход в промзону находится в здании с номером 1, а склад - в здании с номером N.

В последующих строках находится информация об имеющихся картах. Первая строка описания i-ой карты содержит число ri - количество дорог, обозначенных на i-ой карте. Затем идут ri строк, содержащие по два натуральных числа a и b (1 ≤ a, bN; ab), означающих наличие на i-ой карте дороги, соединяющей здания a и b. Суммарное количество дорог, обозначенных на всех картах, не превышает 300 000 (r1 + r2 + ... + rK ≤ 300 000).

Формат выходных данных

В выходной файл необходимо вывести одно число - минимальную сумму расходов сталкера. В случае, если до склада добраться невозможно, выведите число -1.

Примеры

stalker.in

stalker.out

 

stalker.in

stalker.out

5 3

1

3 4

3

1 2

1 3

2 4

1

4 5

2

 

5 3

2

3 2

4 5

1

2 1

2

1 3

5 4

-1

ВверхВниз   Решение


В треугольнике ABC медианы AE и BD, проведённые к сторонам BC и AC, пересекаются под прямым уголом. Сторона BC равна a. Найдите другие стороны треугольника ABC, если AE2 + BD2 = d2.

ВверхВниз   Решение


В выражении  (x4 + x³ – 3x² + x + 2)2006  раскрыли скобки и привели подобные слагаемые.
Докажите, что при некоторой степени переменной x получился отрицательный коэффициент.

ВверхВниз   Решение


Постройте прямоугольный треугольник по отношению его катетов и высоте, опущенной на гипотенузу.

ВверхВниз   Решение


Кое-кто в классе смотрит футбол, кое-кто – мультики, но нет таких, кто не смотрит ни то, ни другое. У любителей мультиков средний балл по математике меньше 4, у любителей футбола – тоже меньше 4. Может ли средний балл всего класса по математике быть больше 4?

ВверхВниз   Решение


В треугольной призме ABCA1B1C1 точки M и N – середины боковых рёбер AA1 и CC1 соответственно. На отрезках CM и AB1 расположены соответственно точки E и F так, что EF || BN . Найдите отношение EF:BN .

ВверхВниз   Решение


Даны m = 2n + 1 точек — середины сторон m-угольника. Постройте его вершины.

Вверх   Решение

Задачи

Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 43]      



Задача 66975

Темы:   [ Теория игр (прочее) ]
[ Построения (прочее) ]
[ Вписанный угол, опирающийся на диаметр ]
Сложность: 4
Классы: 9,10,11

На плоскости проведены три прямые, образующие остроугольный неравнобедренный треугольник. Федя, у которого есть циркуль и линейка, хочет провести все высоты этого треугольника. Ваня с ластиком пытается ему помешать. За ход Федя проводит либо прямую через две отмеченные точки, либо окружность с центром в отмеченной точке, проходящую через другую отмеченную точку. После этого Федя отмечает любое количество точек (точки пересечения проведенных линий, случайные точки на проведенных линиях и случайные точки плоскости). Ваня за ход стирает не более трех отмеченных точек. (Федя не может использовать стертые точки в своих построениях, пока не отметит их снова). Ходят по очереди, начинает Федя. Изначально никакие точки плоскости не отмечены. Может ли Федя провести высоты?
Прислать комментарий     Решение


Задача 116113

Темы:   [ Поворот помогает решить задачу ]
[ Построения (прочее) ]
Сложность: 4
Классы: 8,9

Даны точки A и B и окружность S . С помощью циркуля и линейки постройте на окружности S такие точки C и D , что AC || BD и дуга CD имеет данную величину α .
Прислать комментарий     Решение


Задача 57857

Темы:   [ Центральная симметрия помогает решить задачу ]
[ Построения (прочее) ]
Сложность: 5
Классы: 8,9

Через общую точку A окружностей S1 и S2 проведите прямую l так, чтобы разность длин хорд, высекаемых на l окружностями S1 и S2 имела заданную величину a.
Прислать комментарий     Решение


Задача 53411

Темы:   [ Параллельные прямые, свойства и признаки. Секущие ]
[ Биссектриса угла ]
[ Построения (прочее) ]
Сложность: 3
Классы: 8,9

Через данную точку проведите прямую, пересекающую две данные прямые под равными углами.

Прислать комментарий     Решение

Задача 57858

Темы:   [ Центральная симметрия помогает решить задачу ]
[ Композиция центральных симметрий ]
[ Построения (прочее) ]
[ Произвольные многоугольники ]
Сложность: 5+
Классы: 8,9

Даны m = 2n + 1 точек — середины сторон m-угольника. Постройте его вершины.
Прислать комментарий     Решение


Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 43]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .