ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 2 задачи
Версия для печати
Убрать все задачи



Автостоянка в Цветочном городе представляет собой квадрат 7x 7 клеточек, в каждой из которых можно поставить машину. Стоянка обнесена забором, одна из сторон угловой клетки удалена (это ворота). Машина ездит по дорожке шириной в клетку. Незнайку попросили разместить как можно больше машин на стоянке таким образом, чтобы любая могла выехать, когда прочие стоят. Незнайка расставил 24 машины так, как показано на рис.. Попытайтесь расставить машины по-другому, чтобы их поместилось больше.

Вниз   Решение


Докажите, что центр масс системы точек X1,..., Xn, Y1,..., Ym с массами a1,..., an, b1,..., bm совпадает с центром масс двух точек — центра масс X первой системы с массой a1 +...+ an и центра масс Y второй системы с массой b1 +...+ bm.

Вверх   Решение

Задачи

Страница: 1 2 >> [Всего задач: 8]      



Задача 57747

Тема:   [ Основные свойства центра масс ]
Сложность: 3
Классы: 9

а) Докажите, что центр масс существует и единствен для любой системы точек.
б) Докажите, что если X — произвольная точка, а O — центр масс точек X1,..., Xn с массами m1,..., mn, то $ \overrightarrow{XO}$ = $ {\frac{1}{m_1+\ldots+m_n}}$(m1$ \overrightarrow{XX_1}$ +...+ mn$ \overrightarrow{XX_n}$).
Прислать комментарий     Решение


Задача 57748

Тема:   [ Основные свойства центра масс ]
Сложность: 3
Классы: 9

Докажите, что центр масс системы точек X1,..., Xn, Y1,..., Ym с массами a1,..., an, b1,..., bm совпадает с центром масс двух точек — центра масс X первой системы с массой a1 +...+ an и центра масс Y второй системы с массой b1 +...+ bm.
Прислать комментарий     Решение


Задача 57749

Тема:   [ Основные свойства центра масс ]
Сложность: 3
Классы: 9

Докажите, что центр масс точек A и B с массами a и b лежит на отрезке AB и делит его в отношении b : a.
Прислать комментарий     Решение


Задача 73669

Темы:   [ Основные свойства центра масс ]
[ Свойства медиан. Центр тяжести треугольника. ]
[ Теорема о группировке масс ]
[ ГМТ с ненулевой площадью ]
Сложность: 5
Классы: 9,10,11

Автор: Л.Г.Макаров

Какое множество точек заполняют центры тяжести треугольников, три вершины которых лежат соответственно на трёх сторонах АВ, ВС и АС данного треугольника АВС?
Прислать комментарий     Решение


Задача 77881

Темы:   [ Свойства симметрий и осей симметрии ]
[ Основные свойства центра масс ]
Сложность: 4-
Классы: 8,9,10

Доказать, что если многоугольник имеет несколько осей симметрии, то все они пересекаются в одной точке.
Прислать комментарий     Решение


Страница: 1 2 >> [Всего задач: 8]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .