ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Задача 77881
Темы:    [ Свойства симметрий и осей симметрии ]
[ Основные свойства центра масс ]
Сложность: 4-
Классы: 8,9,10
В корзину
Прислать комментарий

Условие

Доказать, что если многоугольник имеет несколько осей симметрии, то все они пересекаются в одной точке.

Решение

Любая ось симметрии многоугольника проходит через его центр масс (центр масс вершин многоугольника, в которые помещены одинаковые массы). Действительно, при симметрии относительно оси симметрии центр масс переходит сам в себя.

Источники и прецеденты использования

олимпиада
Название Московская математическая олимпиада
год
Номер 12
Год 1949
вариант
Класс 7,8
Тур 1
задача
Номер 2
книга
Автор Прасолов В.В.
Год издания 2001
Название Задачи по планиметрии
Издательство МЦНМО
Издание 4*
глава
Номер 14
Название Центр масс
Тема Центр масс
параграф
Номер 4
Название Разные задачи
Тема Центр масс (прочее)
задача
Номер 14.026
книга
Автор Прасолов В.В.
Год издания 2001
Название Задачи по планиметрии
Издательство МЦНМО
Издание 4*
глава
Номер 17
Название Осевая симметрия
Тема Осевая и скользящая симметрии
параграф
Номер 5
Название Свойства симметрий и осей симметрии
Тема Свойства симметрий и осей симметрии
задача
Номер 17.033

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .