|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Версия для печати
Убрать все задачи Внутри квадрата со стороной 1 расположены несколько кругов, сумма радиусов которых равна 0,51. Доказать, что найдется прямая, которая параллельна одной из сторон квадрата и пересекает, по крайней мере, 2 круга. Внутри сектора AOB круга радиуса R = AO = BO лежит отрезок MN. Докажите, что MN |
Страница: 1 2 3 4 >> [Всего задач: 16]
Существует ли треугольник, в котором одна сторона равна какой-то из его высот, другая – какой-то из биссектрис, а третья – какой-то из медиан?
Один треугольник лежит внутри другого.
б) Внутри выпуклого многоугольника расположен отрезок MN. Докажите, что длина MN не превосходит наибольшей стороны или наибольшей диагонали этого многоугольника.
Докажите, что расстояние между любыми двумя точками, взятыми на сторонах треугольника, не больше наибольшей из его сторон.
Страница: 1 2 3 4 >> [Всего задач: 16] |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|