ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 1 2 3 4 [Всего задач: 16]      



Задача 108104

Темы:   [ Длины сторон, высот, медиан и биссектрис ]
[ Против большей стороны лежит больший угол ]
[ Неравенство треугольника (прочее) ]
[ Отрезок внутри треугольника меньше наибольшей стороны ]
Сложность: 5-
Классы: 8,9

Пусть $l_a$, $l_b$ и $l_c$ – длины биссектрис углов $A$, $B$ и $C$ треугольника $ABC$, а $m_a$, $m_b$ и $m_c$ – длины соответствующих медиан. Докажите, что $$ \frac{l_a}{m_a} + \frac{l_b}{m_b} +\frac{l_c}{m_c} > 1.$$
Прислать комментарий     Решение


Страница: << 1 2 3 4 [Всего задач: 16]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .