ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 6 задач
Версия для печати
Убрать все задачи

Можно ли нарисовать на плоскости четыре красных и четыре чёрных точки так, чтобы для каждой тройки точек одного цвета нашлась такая точка другого цвета, что эти четыре точки являются вершинами параллелограмма?

Вниз   Решение


В стране лингвистов существует n языков. Там живет m людей, каждый из которых знает ровно три языка, причём для разных людей эти наборы различны. Известно, что максимальное число людей, любые два из которых могут поговорить без посредников, равно k. Оказалось, что  11nk ≤ m/2.
Докажите, что тогда в стране найдутся хотя бы mn пар людей, которые не смогут поговорить без посредников.

ВверхВниз   Решение


Потроить треугольник по стороне a, стороне b и высоте к стороне a ha.

ВверхВниз   Решение


Автор: Якубов А.

Пусть MA, MB, MC – середины сторон неравнобедренного треугольника ABC, точки HA, HB, HC, отличные от MA, MB, MC, лежащие на соответствующих сторонах, таковы, что  MAHB = MAHC,  MBHA = MBHC,  MCHA = MCHB.  Докажите, что HA, HB, HC – основания высот треугольника ABC.

ВверхВниз   Решение


Разрежьте квадрат на пять треугольников так, чтобы площадь одного из этих треугольников равнялась сумме площадей оставшихся.

ВверхВниз   Решение


Выразите длину симедианы AS через длины сторон треугольника ABC.

Вверх   Решение

Задачи

Страница: 1 2 3 4 5 6 7 >> [Всего задач: 37]      



Задача 56978

Тема:   [ Точка Лемуана ]
Сложность: 3
Классы: 9

Прямые AM и AN симметричны относительно биссектрисы угла A треугольника ABC (точки M и N лежат на прямой BC). Докажите, что  BM . BN/(CM . CN) = c2/b2. В частности, если AS — симедиана, то  BS/CS = c2/b2.
Прислать комментарий     Решение


Задача 56979

Тема:   [ Точка Лемуана ]
Сложность: 3
Классы: 9

Выразите длину симедианы AS через длины сторон треугольника ABC.
Прислать комментарий     Решение


Задача 56980

Тема:   [ Точка Лемуана ]
Сложность: 3
Классы: 9

Отрезок B1C1, где точки B1 и C1 лежат на лучах AC и AB, называют антипараллельным стороне BC, если  $ \angle$AB1C1 = $ \angle$ABC и  $ \angle$AC1B1 = $ \angle$ACB. Докажите, что симедиана AS делит пополам любой отрезок B1C1, антипараллельный стороне BC.
Прислать комментарий     Решение


Задача 56981

Тема:   [ Точка Лемуана ]
Сложность: 3
Классы: 9

Докажите, что если отрезок B1C1 антипараллелен стороне BC, то B1C1$ \bot$OA, где O — центр описанной окружности.
Прислать комментарий     Решение


Задача 98379

Темы:   [ Точка Лемуана ]
[ Разложение на множители ]
Сложность: 4-
Классы: 8,9

CM и BN – медианы треугольника ABC, P и Q – такие точки соответственно на AB и AC, что биссектриса угла C треугольника одновременно является биссектрисой угла MCP, а биссектриса угла B – биссектрисой угла NBQ. Оказалось, что  AP = AQ.  Следует ли из этого, что треугольник ABC равнобедренный?

Прислать комментарий     Решение


Страница: 1 2 3 4 5 6 7 >> [Всего задач: 37]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .