ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 3 задачи
Версия для печати
Убрать все задачи

На берегу круглого озера растут 6 сосен. Известно, что если взять такие два треугольника, что вершины одного совпадают с тремя из сосен, а вершины другого – с тремя другими, то в середине отрезка, соединяющего точки пересечения высот этих треугольников, на дне озера находится клад. Неизвестно только, как нужно разбить данные шесть точек на две тройки. Сколько раз придётся опуститься на дно озера, чтобы наверняка отыскать клад?

Вниз   Решение


Точка z против часовой стрелки обходит квадрат с вершинами –1 – i,  2 – i,  2 + 2i,  –1 + 2i.  Как при этом ведут себя точки
  a)  z2;   б)  z3;   в)  z–1?

ВверхВниз   Решение


Пусть a и b — длины катетов прямоугольного треугольника, c — длина его гипотенузы. Докажите, что:

а) радиус вписанной окружности треугольника равен (a + b - c)/2;

б) радиус окружности, касающейся гипотенузы и продолжений катетов, равен (a + b + c)/2.

Вверх   Решение

Задачи

Страница: 1 2 3 4 5 6 7 >> [Всего задач: 9776]      



Задача 56540

Тема:   [ Вписанный угол (прочее) ]
Сложность: 2-
Классы: 7,8

Биссектриса внешнего угла при вершине C треугольника ABC пересекает описанную окружность в точке D. Докажите, что AD = BD.
Прислать комментарий     Решение


Задача 56653

Тема:   [ Окружности (прочее) ]
Сложность: 2-
Классы: 8,9

Докажите, что из точки A, лежащей вне окружности, можно провести ровно две касательные к окружности, причем длины этих касательных (т. е. расстояния от A до точек касания) равны.
Прислать комментарий     Решение


Задача 56654

Тема:   [ Окружности (прочее) ]
Сложность: 2-
Классы: 7

Две окружности пересекаются в точках A и B. Точка X лежит на прямой AB, но не на отрезке AB. Докажите, что длины всех касательных, проведенных из точки X к окружностям, равны.
Прислать комментарий     Решение


Задача 56656

Тема:   [ Окружности (прочее) ]
Сложность: 2-
Классы: 7

Пусть a и b — длины катетов прямоугольного треугольника, c — длина его гипотенузы. Докажите, что:

а) радиус вписанной окружности треугольника равен (a + b - c)/2;

б) радиус окружности, касающейся гипотенузы и продолжений катетов, равен (a + b + c)/2.
Прислать комментарий     Решение


Задача 56746

Тема:   [ Площадь (прочее) ]
Сложность: 2-
Классы: 8,9,10

Докажите, что площадь выпуклого четырехугольника равна $\frac12 d_1 d_2\sin\varphi$, где $d_1$ и $d_2$ — длины диагоналей, а $\varphi$ — угол между ними.
Прислать комментарий     Решение


Страница: 1 2 3 4 5 6 7 >> [Всего задач: 9776]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .