|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Версия для печати
Убрать все задачи Угол при вершине D трапеции ABCD с основаниями AD и BC равен 60o. Найдите диагонали трапеции, если AD = 10, BC = 3 и CD = 4.
Найдите основание равнобедренного треугольника, если его боковая сторона равна a, а высота, опущенная на основание, равна отрезку, соединяющему середину основания с серединой боковой стороны. Гриб называется плохим, если в нём не менее 10 червей. В лукошке 90 плохих и 10 хороших грибов. Могут ли все грибы стать хорошими после того, как некоторые черви переползут из плохих грибов в хорошие? На высотах BB1 и CC1 треугольника ABC взяты точки B2 и C2 так, что ∠AB2C = ∠AC2B = 90°. Докажите, что AB2 = AC2. |
Страница: 1 2 3 4 5 6 7 >> [Всего задач: 159]
В прямоугольном треугольнике ABC с прямым углом C проведена высота CH. Докажите, что AC² = AB·AH и CH² = AH·BH.
На высотах BB1 и CC1 треугольника ABC взяты точки B2 и C2 так, что ∠AB2C = ∠AC2B = 90°. Докажите, что AB2 = AC2.
Высота прямоугольного треугольника, проведённая из вершины прямого угла, делит гипотенузу на отрезки, равные a и b. Найдите катеты.
Катеты прямоугольного треугольника относятся как 5:6, а гипотенуза равна 122. Найдите отрезки, на которые высота делит гипотенузу.
Около трапеции ABCD описана окружность радиуса 6. Центр этой окружности лежит на основании AD, BC = 4. Найдите площадь трапеции.
Страница: 1 2 3 4 5 6 7 >> [Всего задач: 159] |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|