|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Версия для печати
Убрать все задачи Докажите, что в любом описанном около окружности многоугольнике найдутся три стороны, из которых можно составить треугольник. Диагонали выпуклого четырёхугольника равны d1 и d2. Какое наибольшее значение может иметь его площадь?
|
Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 40]
В параллелограмм P1 вписан параллелограмм P2, а в параллелограмм P2 вписан параллелограмм P3, стороны которого параллельны сторонам P1. Докажите, что длина хотя бы одной из сторон P1 не превосходит удвоенной длины параллельной ей стороны P3.
а) один из углов этого четырёхугольника не больше $60^\circ$; б) один из углов этого четырёхугольника не меньше $120^\circ$.
Диагонали выпуклого четырёхугольника равны d1 и d2. Какое наибольшее значение может иметь его площадь?
В прямоугольник вписан четырёхугольник (на каждой стороне прямоугольника по
одной вершине четырёхугольника).
Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 40] |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|