|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Материалы по этой теме:
Подтемы:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Версия для печати
Убрать все задачи Окружность разделена точками A, B, C, D так, что ⌣AB : ⌣BC : ⌣CD : ⌣DA = 2 : 3 : 5 : 6.
Проведены хорды AC и BD, пересекающиеся в точке M. Окружность разделена точками A, B, C, D так, что ⌣AB : ⌣ BC : ⌣ CD : ⌣ DA = 3 : 2 : 13 : 7. Хорды AD и BC продолжены до пересечения в точке M.
Даны два круга — один внутри другого. Через их центры проведен в большем круге диаметр, который окружностью меньшего круга делится на три части, равные 5, 8 и 1. Найдите расстояние между центрами кругов.
Каждая из двух равных окружностей ω1 и ω2 проходит через центр другой. Треугольник ABC вписан в ω1, а прямые AC, BC касаются ω2. На плоскости дано n Биссектриса внешнего угла при вершине C треугольника ABC пересекает описанную окружность в точке D. Докажите, что AD = BD. На плоскости расположено несколько точек, все попарные расстояния между которыми различны. Каждую из этих точек соединяют с ближайшей. Может ли при этом получиться замкнутая ломаная? Каково взаимное расположение двух окружностей, если: а) расстояние между центрами равно 10, а радиусы равны 8 и 2; б) расстояние между центрами равно 4, а радиусы равны 11 и 17; в) расстояние между центрами равно 12, а радиусы равны 5 и 3?
В произведении трёх натуральных чисел каждый сомножитель уменьшили на 3. Могло ли произведение при этом увеличиться ровно на 2016? Одна окружность находится внутри другой. Их радиусы равны 28 и 12, а кратчайшее расстояние между точками этих окружностей равно 10. Найдите расстояние между центрами.
На столе лежат монеты без наложений. Докажите, что одну из них можно выдвинуть, не задевая остальных. Окружность, построенная на биссектрисе AD треугольника ABC как на диаметре, пересекает стороны AB и AC соответственно в точках M и N, отличных от A. Докажите, что AM = AN. |
Страница: 1 2 3 4 5 6 7 >> [Всего задач: 1284]
Окружность разделена точками A, B, C, D так, что ⌣AB : ⌣BC : ⌣CD : ⌣DA = 2 : 3 : 5 : 6.
Проведены хорды AC и BD, пересекающиеся в точке M.
Окружность разделена точками A, B, C, D так, что ⌣AB : ⌣ BC : ⌣ CD : ⌣ DA = 3 : 2 : 13 : 7. Хорды AD и BC продолжены до пересечения в точке M.
На катете AC прямоугольного треугольника ABC как на диаметре
построена окружность, пересекающая гипотенузу AB в точке K.
Окружность, построенная на биссектрисе AD треугольника ABC как на диаметре, пересекает стороны AB и AC соответственно в точках M и N, отличных от A. Докажите, что AM = AN.
Страница: 1 2 3 4 5 6 7 >> [Всего задач: 1284] |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|