|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Версия для печати
Убрать все задачи Петя и Вася нарисовали по четырёхугольнику без параллельных сторон. Каждый провёл в своём четырёхугольнике одну из диагоналей и вычислил углы, образованные этой диагональю со сторонами своего четырёхугольника. Петя получил числа α, α, β и γ (в некотором порядке), и Вася – тоже эти числа (возможно, в другом порядке). Докажите, что диагонали четырёхугольника Пети пересекаются под теми же углами, что и диагонали четырёхугольника Васи. Существует ли выпуклый многогранник, у которого есть диагонали и каждая диагональ меньше любого ребра? а) Найдите геометрическое место центров тяжести треугольников, вершины которых лежат на сторонах данного треугольника (по одной вершине внутри каждой стороны). б) Найдите геометрическое место центров тяжести тетраэдров, вершины которых лежат на гранях данного тетраэдра (по одной вершине внутри каждой грани). Докажите, что не существует конечного множества, содержащего более 2N ( N>3 ) попарно неколлинеарных векторов на плоскости, обладающего следующими двумя свойствами.
Докажите, что на окружности с центром в точке Две окружности пересекаются в точках A и B; AM и AN – диаметры окружностей. Докажите, что точки M, N и B лежат на одной прямой. |
Страница: 1 2 3 4 5 6 7 >> [Всего задач: 149]
На плоскости нарисовано пять различных окружностей. Известно, что каждые четыре из них имеют общую точку.
Две окружности пересекаются в точках A и B; AM и AN – диаметры окружностей. Докажите, что точки M, N и B лежат на одной прямой.
Радиусы двух пересекающихся окружностей равны 13 и 15, а общая хорда равна 24. Найдите расстояние между центрами.
Две окружности пересекаются в точках А и В. Через точку В проведена прямая, пересекающая окружности в точках М и N так, что АВ – биссектриса треугольника МАN. Докажите, что отношение отрезков ВМ и BN равно отношению радиусов окружностей.
Страница: 1 2 3 4 5 6 7 >> [Всего задач: 149] |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|