|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Версия для печати
Убрать все задачи Пусть P(xn) делится на x – 1. Докажите, что P(xn) делится на xn – 1. С помощью циркуля и линейки постройте прямую, равноудаленную от трёх данных точек.
Докажите, что из любых семи натуральных чисел (не обязательно идущих подряд) можно выбрать три числа, сумма которых делится на 3. Разменный автомат меняет одну монету на пять других. Можно ли с его помощью разменять металлический рубль на 26 монет? a, b и n – натуральные числа, и n нечётно. Докажите, что если числитель и знаменатель дроби Составьте уравнение плоскости, проходящей через середину отрезка с концами в точках P(-1;2;5) и Q(3;-4;1) перпендикулярно прямой, проходящей через точки A(0;-2;-1) и B(3;2;-1) . Две окружности пересекаются в точках A и B; AM и AN – диаметры окружностей. Докажите, что точки M, N и B лежат на одной прямой. |
Страница: 1 2 3 4 5 6 7 >> [Всего задач: 149]
На плоскости нарисовано пять различных окружностей. Известно, что каждые четыре из них имеют общую точку.
Две окружности пересекаются в точках A и B; AM и AN – диаметры окружностей. Докажите, что точки M, N и B лежат на одной прямой.
Радиусы двух пересекающихся окружностей равны 13 и 15, а общая хорда равна 24. Найдите расстояние между центрами.
Две окружности пересекаются в точках А и В. Через точку В проведена прямая, пересекающая окружности в точках М и N так, что АВ – биссектриса треугольника МАN. Докажите, что отношение отрезков ВМ и BN равно отношению радиусов окружностей.
Страница: 1 2 3 4 5 6 7 >> [Всего задач: 149] |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|