|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Версия для печати
Убрать все задачи На продолжениях сторон CA и AB треугольника ABC за точки A и B соответственно отложены отрезки AE = BC и BF = AC. Окружность касается отрезка BF в точке N, стороны BC и продолжения стороны AC за точку C. Точка M – середина отрезка EF. Докажите, что прямая MN параллельна биссектрисе угла A. Биссектриса угла C и внешнего угла A трапеции ABCD с основаниями BC и AD пересекаются в точке M, а биссектриса угла B и внешнего угла D – в точке N. Докажите, что середина отрезка MN равноудалена от прямых AB и CD. |
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 149]
Докажите, что общая хорда двух окружностей перпендикулярна прямой, соединяющей их центры.
Точки A и B соединены двумя дугами окружностей, обращенными
выпуклостями в разные стороны:
Даны две окружности, пересекающиеся в точках A и D; AB и CD – касательные к первой и второй окружностям (B и C – точки на окружностях).
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 149] |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|