ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 3 задачи
Версия для печати
Убрать все задачи

Все рёбра правильной четырёхугольной пирамиды равны. Найдите угол между противоположными боковыми рёбрами.

Вниз   Решение


Шеренга солдат называется неправильной, если никакие три подряд стоящих солдата не стоят по росту (ни в порядке возрастания, ни в порядке убывания). Сколько неправильных шеренг можно построить из n солдат разного роста, если

  а)  n = 4;

  б)  n = 5?

ВверхВниз   Решение


Каждая сторона квадрата ABCD разделена на три равные части и соответствующие точки деления на противоположных сторонах соединены отрезками (см. рис.). Докажите, что  ∠AKM = ∠CDN.

Вверх   Решение

Задачи

Страница: << 18 19 20 21 22 23 24 >> [Всего задач: 331]      



Задача 79500

Темы:   [ Прямоугольники и квадраты. Признаки и свойства ]
[ Теория алгоритмов (прочее) ]
[ Оценка + пример ]
Сложность: 4-
Классы: 11

На листе бумаги отмечены точки A, B, C, D. Распознающее устройство может абсолютно точно выполнять два типа операций: а) измерять в сантиметрах расстояние между двумя заданными точками; б) сравнивать два заданных числа. Какое наименьшее число операций нужно выполнить этому устройству, чтобы наверняка определить, является ли четырёхугольник ABCD квадратом?
Прислать комментарий     Решение


Задача 53371

Темы:   [ Прямоугольники и квадраты. Признаки и свойства ]
[ Вспомогательные равные треугольники ]
Сложность: 4-
Классы: 8,9

Каждая сторона квадрата ABCD разделена на три равные части и соответствующие точки деления на противоположных сторонах соединены отрезками (см. рис.). Докажите, что  ∠AKM = ∠CDN.

Прислать комментарий     Решение

Задача 53866

Темы:   [ Прямоугольники и квадраты. Признаки и свойства ]
[ Теорема Фалеса и теорема о пропорциональных отрезках ]
[ Признаки и свойства равнобедренного треугольника. ]
Сложность: 4-
Классы: 8,9

M и N – середины сторон AD и BC прямоугольника ABCD. На продолжении отрезка DC за точку D взята точка P, Q – точка пересечения прямых PM и AC.
Докажите, что  ∠QNM = ∠MNP.

Прислать комментарий     Решение

Задача 54112

Темы:   [ Прямоугольники и квадраты. Признаки и свойства ]
[ Вспомогательные равные треугольники ]
Сложность: 4-
Классы: 8,9

Докажите, что биссектрисы всех четырёх углов прямоугольника, не являющегося квадратом, при пересечении образуют квадрат.

Прислать комментарий     Решение

Задача 55548

Темы:   [ Прямоугольники и квадраты. Признаки и свойства ]
[ Вспомогательная окружность ]
Сложность: 4-
Классы: 8,9

Два квадрата в пересечении дают восьмиугольник (рис.1). Две диагонали этого восьмиугольника делят его на на четыре четырёхугольника. Докажите, что эти диагонали перпендикулярны.

Прислать комментарий     Решение


Страница: << 18 19 20 21 22 23 24 >> [Всего задач: 331]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .