|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Версия для печати
Убрать все задачи Все рёбра правильной четырёхугольной пирамиды равны. Найдите угол между противоположными боковыми рёбрами. Шеренга солдат называется неправильной, если никакие три подряд стоящих солдата не стоят по росту (ни в порядке возрастания, ни в порядке убывания). Сколько неправильных шеренг можно построить из n солдат разного роста, если а) n = 4; б) n = 5? Каждая сторона квадрата ABCD разделена на три равные части и соответствующие точки деления на противоположных сторонах соединены отрезками (см. рис.). Докажите, что ∠AKM = ∠CDN. |
Страница: << 18 19 20 21 22 23 24 >> [Всего задач: 331]
Каждая сторона квадрата ABCD разделена на три равные части и соответствующие точки деления на противоположных сторонах соединены отрезками (см. рис.). Докажите, что ∠AKM = ∠CDN.
M и N – середины сторон AD и BC прямоугольника ABCD. На продолжении отрезка DC за точку D взята точка P, Q – точка пересечения прямых PM и AC.
Докажите, что биссектрисы всех четырёх углов прямоугольника, не являющегося квадратом, при пересечении образуют квадрат.
Два квадрата в пересечении дают восьмиугольник (рис.1). Две диагонали этого восьмиугольника делят его на на четыре четырёхугольника. Докажите, что эти диагонали перпендикулярны.
Страница: << 18 19 20 21 22 23 24 >> [Всего задач: 331] |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|