ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 4 задачи
Версия для печати
Убрать все задачи

В остроугольном треугольнике ABC проведены высоты AA1 и BB1. Биссектриса внешнего угла при вершине C пересекает прямые AB и A1B1 в точках L и K соответственно. Оказалось, что  CL = 2CK.  Найдите угол C.

Вниз   Решение


Набор чисел a, b, c каждую секунду заменяется на a + bc, b + ca, c + ab. В начале имеется набор чисел 2000, 2002, 2003. Может ли через некоторое время получиться набор 2001, 2002, 2003.

ВверхВниз   Решение


На каждом километре шоссе между сёлами Ёлкино и Палкино стоит столб с табличкой, на одной стороне которой написано, сколько километров до Ёлкино, а на другой – до Палкино. Боря заметил, что на каждом столбе сумма всех цифр равна 13. Каково расстояние от Ёлкино до Палкино?

ВверхВниз   Решение


Две прямые проходят через точку M и касаются окружности в точках A и B. Проведя радиус OB, продолжают его за точку B на расстояние BC = OB. Докажите, что $ \angle$AMC = 3$ \angle$BMC.

Вверх   Решение

Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 285]      



Задача 116364

Темы:   [ Две касательные, проведенные из одной точки ]
[ Признаки и свойства касательной ]
[ Площадь трапеции ]
[ Средние пропорциональные в прямоугольном треугольнике ]
Сложность: 3-
Классы: 8,9,10

Окружность, вписанная в прямоугольную трапецию, делит её большую боковую сторону на отрезки, равные 1 и 4. Найдите площадь трапеции.
Прислать комментарий     Решение


Задача 116365

Темы:   [ Две касательные, проведенные из одной точки ]
[ Признаки и свойства касательной ]
[ Площадь трапеции ]
[ Средние пропорциональные в прямоугольном треугольнике ]
Сложность: 3-
Классы: 8,9,10

Окружность, вписанная в равнобедренную трапецию, делит её боковую сторону на отрезки, равные 4 и 9. Найдите площадь трапеции.
Прислать комментарий     Решение


Задача 52551

Темы:   [ Две касательные, проведенные из одной точки ]
[ Признаки и свойства касательной ]
Сложность: 3
Классы: 8,9

Две прямые проходят через точку M и касаются окружности в точках A и B. Проведя радиус OB, продолжают его за точку B на расстояние BC = OB. Докажите, что $ \angle$AMC = 3$ \angle$BMC.

Прислать комментарий     Решение


Задача 52732

Темы:   [ Две касательные, проведенные из одной точки ]
[ Тригонометрические соотношения в прямоугольном треугольнике ]
Сложность: 3
Классы: 8,9

Из точки A проведены две прямые, касающиеся окружности радиуса R в точках C и B, причём треугольник ABC — равносторонний. Найдите его площадь.

Прислать комментарий     Решение


Задача 52712

Темы:   [ Две касательные, проведенные из одной точки ]
[ Радиусы вписанной, описанной и вневписанной окружности (прочее) ]
Сложность: 3
Классы: 8,9

В треугольник со сторонами 6, 10 и 12 вписана окружность. К окружности проведена касательная, пересекающая две бóльшие стороны.
Найдите периметр отсечённого треугольника.

Прислать комментарий     Решение

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 285]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .