|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Версия для печати
Убрать все задачи В остроугольном треугольнике ABC проведены высоты AA1 и BB1. Биссектриса внешнего угла при вершине C пересекает прямые AB и A1B1 в точках L и K соответственно. Оказалось, что CL = 2CK. Найдите угол C. Набор чисел a, b, c каждую секунду заменяется на a + b − c, b + c − a, c + a − b. В начале имеется набор чисел 2000, 2002, 2003. Может ли через некоторое время получиться набор 2001, 2002, 2003. На каждом километре шоссе между сёлами Ёлкино и Палкино стоит столб с табличкой, на одной стороне которой написано, сколько километров до Ёлкино, а на другой – до Палкино. Боря заметил, что на каждом столбе сумма всех цифр равна 13. Каково расстояние от Ёлкино до Палкино?
Две прямые проходят через точку M и касаются окружности в
точках A и B. Проведя радиус OB, продолжают его за точку B на
расстояние BC = OB. Докажите, что
|
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 285]
Две прямые проходят через точку M и касаются окружности в
точках A и B. Проведя радиус OB, продолжают его за точку B на
расстояние BC = OB. Докажите, что
Из точки A проведены две прямые, касающиеся окружности радиуса R в точках C и B, причём треугольник ABC — равносторонний. Найдите его площадь.
В треугольник со сторонами 6, 10 и 12 вписана окружность. К окружности проведена касательная, пересекающая две бóльшие стороны.
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 285] |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|