|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Версия для печати
Убрать все задачи Существует ли такая гипербола, задаваемая уравнением вида $y=\frac{a}{x}$, что в первой координатной четверти (x>0, y>0) под ней лежат ровно 82 точки с целочисленными координатами? На доске написаны девять приведённых квадратных трёхчленов: x² + a1x + b1, x² + a2x + b2, ..., x² + a9x + b9. Известно, что последовательности a1, a2, ..., a9 и b1, b2, ..., b9 – арифметические прогрессии. Оказалось, что сумма всех девяти трёхчленов имеет хотя бы один корень. Какое наибольшее количество исходных трёхчленов может не иметь корней? Луч света, пущенный из точки M, зеркально отразившись от прямой AB в точке C, попал в точку N. Точки M и N расположены соответственно на сторонах AB и AC треугольника ABC, причём AM : MB = 1 : 2, AN : NC = 3 : 2. Прямая MN пересекает продолжение стороны BC в точке F. Найдите CF : BC. В основании пирамиды ABCD лежит прямоугольный треугольник ABC с гипотенузой AC , DC – высота пирамиды, AB=1 , BC=2 , CD=3 . Найдите двугранный угол между плоскостями ADB и ADC . Найдите все трёхзначные числа, квадраты которых оканчиваются на 1001. Найдите последние две цифры в десятичной записи числа 1! + 2! + ... + 2001! + 2002!. |
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 121]
Найдите последние две цифры в десятичной записи числа 1! + 2! + ... + 2001! + 2002!.
Цифры 1, 2, ..., 9 разбили на три группы. Докажите, что произведение чисел в одной из групп не меньше 72.
Верно ли, что любое положительное чётное число можно представить в виде произведения целых чисел, сумма которых равна нулю?
Доказать, что при натуральном n число nm + 1 будет составным хотя бы для одного натурального m.
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 121] |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|