ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 6 задач
Версия для печати
Убрать все задачи

Среди пяти внешне одинаковых монет 3 настоящие и две фальшивые, одинаковые по весу, но неизвестно, тяжелее или легче настоящих. Как за наименьшее число взвешиваний найти хотя бы одну настоящую монету?

Вниз   Решение


Несколько школьников ходили за грибами. Школьник, набравший наибольшее количество грибов, собрал ⅕ общего количества грибов, а школьник, набравший наименьшее количество грибов, собрал 1/7 часть от общего количества. Сколько было школьников?

ВверхВниз   Решение


Вписанная окружность треугольника ABC касается сторон AB, BC и AC в точках C1, A1 и B1 соответственно. Известно, что  AC1 = BA1 = CB1.  Докажите, что треугольник ABC правильный.

ВверхВниз   Решение


Является ли число степенью двойки?

Вводится число. Напечатать YES, если оно является степенью двойки,
NO - иначе

Пример входного файла
8

Пример выходного файла
YES



Пример входного файла
22

Пример выходного файла
NO

ВверхВниз   Решение


Даны точки A(-3;0;1) , B(2;1;-1) , C(-2;2;0) и D(1;3;2) . Найдите угол между прямыми AB и CD .

ВверхВниз   Решение


Бесконечный коридор ширины 1 поворачивает под прямым углом. Докажите, что можно подобрать проволоку так, чтобы расстояние между ее концами больше 4, и чтобы ее можно было протащить через этот коридор.

Вверх   Решение

Задачи

Страница: 1 [Всего задач: 3]      



Задача 78625

Темы:   [ Метрические соотношения (прочее) ]
[ Правильный (равносторонний) треугольник ]
[ Прямоугольные треугольники (прочее) ]
Сложность: 4-
Классы: 10,11

На каждой стороне треугольника ABC построено по квадрату во внешнюю сторону (пифагоровы штаны). Оказалось, что внешние вершины всех квадратов лежат на одной окружности. Доказать, что треугольник ABC — равнобедренный.
Прислать комментарий     Решение


Задача 35612

Темы:   [ Прямоугольные треугольники (прочее) ]
[ Метрические соотношения (прочее) ]
Сложность: 2+
Классы: 9,10

Бесконечный коридор ширины 1 поворачивает под прямым углом. Докажите, что можно подобрать проволоку так, чтобы расстояние между ее концами больше 4, и чтобы ее можно было протащить через этот коридор.
Прислать комментарий     Решение


Задача 66169

Темы:   [ Вписанные и описанные окружности ]
[ Углы между биссектрисами ]
[ Общая касательная к двум окружностям ]
[ Прямые, касающиеся окружностей (прочее) ]
[ Метрические соотношения (прочее) ]
Сложность: 5
Классы: 9,10,11

Дан выпуклый четырёхугольник ABCD. Обозначим через IA, IB, IC и ID центры вписанных окружностей ωA, ωB, ωC и ωD треугольников DAB, ABC, BCD и CDA соответственно. Оказалось, что  ∠BIAA + ∠ICIAID = 180°.  Докажите, что  ∠BIBA + ∠ICIBID = 180°.

Прислать комментарий     Решение

Страница: 1 [Всего задач: 3]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .