|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Версия для печати
Убрать все задачи В набор "Юный геометр" входит несколько плоских граней, из которых можно собрать выпуклый многогранник. Юный геометр Саша разделил эти грани на две кучки. Могло ли случиться, что из граней каждой кучки тоже можно собрать выпуклый многогранник? В гоночном турнире 12 этапов и n участников. После каждого этапа все участники в зависимости от занятого места k получают баллы ak (числа ak натуральны, и a1 > a2 > ... > an). При каком наименьшем n устроитель турнира может выбрать числа a1, ..., an так, что после предпоследнего этапа при любом возможном распределении мест хотя бы двое участников имели шансы занять первое место. Можно ли выписать в строчку 2000 чисел так, чтобы сумма любых трех последовательных чисел была отрицательной, а сумма всех чисел - положительной? Два четырехугольника $ABCD$ и $A_1B_1C_1D_1$ симметричны друг другу относительно точки $P$. Известно, что четырехугольники $A_1BCD$, $AB_1CD$ и $ABC_1D$ вписанные. Докажите, что $ABCD_1$ тоже вписанный. В треугольнике $ABC$ $N$ – середина дуги $ABC$ описанной окружности треугольника, $NP$ и $NT$ – касательные к вписанной окружности. Прямые $BP$ и $BT$ пересекают второй раз описанную окружность треугольника в точках $P_1$ и $T_1$ соответственно. Докажите, что $PP_1=TT_1$. Окружность $\omega_1$ проходит через вершину $A$ параллелограмма $ABCD$ и касается лучей $CB$, $CD$. Окружность $\omega_2$ касается лучей $AB$, $AD$ и касается внешним образом $\omega_1$ в точке $T$. Докажите, что $T$ лежит на диагонали $AC$. Найти все действительные решения уравнения с 4 неизвестными: x2 + y2 + z2 + t2 = x(y + z + t). |
Страница: 1 2 3 4 >> [Всего задач: 17]
Найти все действительные решения уравнения с 4 неизвестными: x2 + y2 + z2 + t2 = x(y + z + t).
Число a – корень уравнения х11 + х7 + х3 = 1. При каких натуральных значениях n выполняется равенство a4 + a3 = an + 1?
При каких значениях x и y верно равенство x² + (1 – y)² + (x – y)² = ⅓?
В квадрате $4\times4$ расставили целые числа так, что в каждом из восьми рядов (строках и столбцах) сумма чисел одна и та же. Семь чисел известны, а остальные скрыты (см. рисунок). Можно ли по имеющимся данным восстановить
Страница: 1 2 3 4 >> [Всего задач: 17] |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|