ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 2 задачи
Версия для печати
Убрать все задачи

Даны N отрезков прямой. Найти длину общей части всех этих отрезков.

Входные данные.
Вводится сначала число N (1<=N<=100). Далее воодится N пар чисел,
задающих координаты левого и правого концов каждого отрезка. Все
координаты - числа из дапазона от 0 до 30000. Левый конец отрезка
всегда имеет координату строго меньшую, чем правый.

Выходные данные.
Выведите длину общей части этих отрезов. Если у всех этих отрезков
общей части нет, выведите 0.

Пример входного файла
3
1 10
3 15
2 6

Пример выходного файла
3

Пояснение: общая часть этих отрезков - отрезок от 3 до 6.

Пример входного файла
3
1 10
2 20
11 20

Пример выходного файла:
0

Пояснение: у этих отрезков нет общей части

Вниз   Решение


Автор: Фольклор

Верно ли, что если  b > a + c > 0,  то квадратное уравнение  ax² + bx + c = 0   имеет два корня?

Вверх   Решение

Задачи

Страница: << 1 2 3 4 [Всего задач: 17]      



Задача 35728

Темы:   [ Многочлен нечетной степени имеет действительный корень ]
[ Уравнение плоскости ]
[ Алгебраические уравнения и системы уравнений (прочее) ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 4
Классы: 10,11

Докажите, что в пространстве найдётся гладкая кривая, которая пересекается с каждой плоскостью.

Прислать комментарий     Решение

Задача 66474

Темы:   [ Целая и дробная части. Принцип Архимеда ]
[ Алгебраические неравенства (прочее) ]
[ Алгебраические уравнения и системы уравнений (прочее) ]
Сложность: 4
Классы: 8,9,10,11

Докажите, что для любых натуральных a1, a2, ..., ak таких, что , у уравнения не больше чем a1a2...ak решений в натуральных числах. ([x] – целая часть числа x, т. е. наибольшее целое число, не превосходящее x.)
Прислать комментарий     Решение


Страница: << 1 2 3 4 [Всего задач: 17]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .