|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Ссылки по теме:
Статья "Графы" (А. Савин) Статья "Элементы теории графов" (В. Фосс) Материалы по этой теме:
Подтемы:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Версия для печати
Убрать все задачи На окружности даны точки A, B, C, D в указанном порядке. M — середина дуги AB. Обозначим точки пересечения хорд MC и MD с хордой AB через E и K. Докажите, что KECD — вписанный четырехугольник. а) В квадрате площади 6 расположены три многоугольника площади 3. Докажите, что среди них найдутся два многоугольника, площадь общей части которых не меньше 1. б) В квадрате площади 5 расположено девять многоугольников площади 1. Докажите, что среди них найдутся два многоугольника, площадь общей части которых не меньше 1/9. В каждый угол треугольника ABC вписана окружность, касающаяся описанной окружности. Пусть A1, B1 и C1 — точки касания этих окружностей с описанной окружностью. Докажите, что прямые AA1, BB1 и CC1 пересекаются в одной точке. На доске написано 10 плюсов и 15 минусов. Разрешается стереть любые два знака и написать вместо них плюс, если они одинаковы, и минус в противном случае. Какой знак останется на доске после выполнения 24 таких операций? Чему равна площадь треугольника со сторонами 18, 17, 35? Докажите, что при всех $x$, $0 < x < \pi/3$, справедливо неравенство $\sin 2x + \cos x > 1$. Докажите, что в дереве есть вершина, из которой выходит ровно одно ребро (такая вершина называется висячей). |
Страница: << 4 5 6 7 8 9 10 >> [Всего задач: 389]
На сторонах некоторого многоугольника расставлены стрелки.
Докажите, что не существует многогранника, у которого было бы ровно семь рёбер.
а) Дан кусок проволоки длиной 120 см. Можно ли, не ломая проволоки, изготовить каркас куба с ребром 10 см?
Докажите, что в дереве есть вершина, из которой выходит ровно одно ребро (такая вершина называется висячей).
Докажите, что при удалении любого ребра из дерева оно превращается в несвязный граф.
Страница: << 4 5 6 7 8 9 10 >> [Всего задач: 389] |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|