ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 2 задачи
Версия для печати
Убрать все задачи

Докажите, что среди 51 целого числа найдутся два, квадраты которых дают одинаковые остатки при делении на 100.

Вниз   Решение


Про семь натуральных чисел известно, что сумма любых шести из них делится на 5. Докажите, что каждое из данных чисел делится на 5.

Вверх   Решение

Задачи

Страница: << 4 5 6 7 8 9 10 >> [Всего задач: 189]      



Задача 30405

Темы:   [ Деление с остатком ]
[ Арифметика остатков (прочее) ]
Сложность: 3+
Классы: 7,8,9

Про семь натуральных чисел известно, что сумма любых шести из них делится на 5. Докажите, что каждое из данных чисел делится на 5.

Прислать комментарий     Решение

Задача 30599

Темы:   [ Деление с остатком ]
[ Разложение на множители ]
[ Принцип Дирихле (прочее) ]
[ Разбиения на пары и группы; биекции ]
Сложность: 3+
Классы: 7,8,9

Докажите, что среди 51 целого числа найдутся два, квадраты которых дают одинаковые остатки при делении на 100.

Прислать комментарий     Решение

Задача 30605

Темы:   [ Деление с остатком ]
[ Простые числа и их свойства ]
Сложность: 3+
Классы: 8,9

Обозначим через k произведение нескольких (больше одного) первых простых чисел.
Докажите, что число   а)  k – 1;   б)  k + 1  не является точным квадратом.

Прислать комментарий     Решение

Задача 32028

Темы:   [ Деление с остатком ]
[ Разбиения на пары и группы; биекции ]
[ Арифметика остатков (прочее) ]
Сложность: 3+
Классы: 7,8,9,10

Все натуральные числа поделены на хорошие и плохие. Известно, что если число m хорошее, то и число  m + 6  тоже хорошее, а если число n плохое, то и число  n + 15  тоже плохое. Может ли среди первых 2000 чисел быть ровно 1000 хороших?

Прислать комментарий     Решение

Задача 60653

Темы:   [ Деление с остатком ]
[ Разложение на множители ]
[ Арифметика остатков (прочее) ]
[ Малая теорема Ферма ]
Сложность: 3+
Классы: 8,9,10

Докажите, что
  а)  241 + 1  делится на 83;
  б)  270 + 370  делится на 13;
  в)  260 – 1  делится на 20801.

Прислать комментарий     Решение

Страница: << 4 5 6 7 8 9 10 >> [Всего задач: 189]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .