|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Версия для печати
Убрать все задачи В произведении пяти натуральных чисел каждый сомножитель уменьшили на 3. Могло ли произведение при этом увеличиться ровно в 15 раз? Сколькими способами можно заполнить одну карточку в лотерее "Спортпрогноз"? (В этой лотерее нужно предсказать итог тринадцати спортивных матчей. Итог каждого матча – победа одной из команд либо ничья; счёт роли не играет). а) Дан осесимметричный выпуклый 101-угольник. Докажите, что ось симметрии проходит через одну из его вершин. Сколько двоек будет в разложении на простые множители числа 1984! ? Даны квадратные трёхчлены f1(x), f2(x), ..., f100(x) с одинаковыми коэффициентами при x², одинаковыми коэффициентами при x, но различными свободными членами; у каждого из них есть по два корня. У каждого трёхчлена fi(x) выбрали один корень и обозначили его через xi. Какие значения может принимать сумма f2(x1) + f3(x2) + ... + f100(x99) + f1(x100)? Все коэффициенты квадратного трёхчлена – нечётные целые числа. Докажите, что у него нет корней вида 1/n, где n – натуральное число. Правильный n-угольник вписан в единичную окружность. Докажите, что
Сколькими способами можно разбить 14 человек на пары? |
Страница: << 5 6 7 8 9 10 11 >> [Всего задач: 157]
Сколькими способами можно разбить 14 человек на пары?
На прямой отмечено 10 точек, а на параллельной ей прямой – 11 точек.
Сколько существует десятизначных чисел, в записи которых имеется хотя бы две одинаковые цифры?
Имеется множество C, состоящее из n элементов. Сколькими способами можно выбрать в C два подмножества A и B так, чтобы
Рассмотрим лист клетчатой бумаги со стороной клетки, равной 1. Пусть Pk – число всех непересекающихся ломаных длины k, начинающихся в точке O – некотором фиксированном узле сетки. Доказать, что Pk·3–k < 2 для любого k.
Страница: << 5 6 7 8 9 10 11 >> [Всего задач: 157] |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|