ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 8 задач
Версия для печати
Убрать все задачи

Докажите равенство треугольников по стороне и медианам, проведённым к двум другим сторонам.

Вниз   Решение


Отрезок EF параллелен плоскости, в которой лежит прямоугольник ABCD , причём EF = 2 , AB = 4 . Все стороны прямоугольника ABCD и отрезки AE , BE , CF , DF , EF касаются некоторого шара. Найдите объём этого шара.

ВверхВниз   Решение


В основании треугольной пирамиды ABCD лежит треугольник ABC , в котором BAC = 60o , а угол ACB – прямой. Грань BCD образует угол в 60o с гранью ABC . Ребро BD = 2 . Сфера касается ребёр AB , AC и грани BCD . Центр сферы – точка O лежит на основании пирамиды, и отрезок OD перпендикулярен плоскости основания пирамиды ABCD . Найдите длину ребра AC .

ВверхВниз   Решение


В сумме  + 1 + 3 + 9 + 27 + 81 + 243 + 729  можно вычеркивать любые слагаемые и изменять некоторые знаки перед оставшимися числами с "+" на "–". Маша хочет таким способом сначала получить выражение, значение которого равно 1, затем, начав сначала, получить выражение, значение которого равно 2, затем (снова начав сначала) получить 3, и так далее. До какого наибольшего целого числа ей удастся это сделать без пропусков?

ВверхВниз   Решение


Пассажир оставил вещи в автоматической камере хранения, а когда пришёл получать вещи, выяснилось, что он забыл номер. Он только помнит, что в номере были числа 23 и 37. Чтобы открыть камеру, нужно правильно набрать пятизначный номер. Каково наименьшее количество номеров нужно перебрать, чтобы наверняка открыть камеру?

ВверхВниз   Решение


На одной из двух данных пересекающихся сфер взяты точки A и B, на другой – C и D. Отрезок AC проходит через общую точку сфер. Отрезок BD проходит через другую общую точку сфер и параллелен прямой, содержащей центры сфер. Докажите, что проекции отрезков AB и CD на прямую AC равны.

ВверхВниз   Решение


Доказать, что следующие числа не являются квадратами:
  а) 12345678;  б) 987654;  в) 1234560;  d) 98765445.

ВверхВниз   Решение


Автор: Фольклор

Дан многочлен P(x) с целыми коэффициентами. Известно, что  Р(1) = 2013,  Р(2013) = 1,  P(k) = k,  где k – некоторое целое число. Найдите k.

Вверх   Решение

Задачи

Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 57]      



Задача 107714

Темы:   [ Целочисленные и целозначные многочлены ]
[ Теорема Безу. Разложение на множители ]
Сложность: 3
Классы: 8,9,10

Все коэффициенты многочлена P(x) – целые числа. Известно, что  P(1) = 1  и что  P(n) = 0  при некотором натуральном n. Найдите n.

Прислать комментарий     Решение

Задача 116988

Темы:   [ Делимость чисел. Общие свойства ]
[ Теорема Безу. Разложение на множители ]
Сложность: 3
Классы: 9,10,11

Автор: Фольклор

Дан многочлен P(x) с целыми коэффициентами. Известно, что  Р(1) = 2013,  Р(2013) = 1,  P(k) = k,  где k – некоторое целое число. Найдите k.

Прислать комментарий     Решение

Задача 60967

Темы:   [ Деление многочленов с остатком. НОД и НОК многочленов ]
[ Теорема Безу. Разложение на множители ]
Сложность: 3+
Классы: 8,9,10

Найдите остаток от деления многочлена  P(x) = x5 – 17x + 1  на  x + 2.

Прислать комментарий     Решение

Задача 60969

Темы:   [ Деление многочленов с остатком. НОД и НОК многочленов ]
[ Теорема Безу. Разложение на множители ]
Сложность: 3+
Классы: 8,9,10

Найдите остаток от деления многочлена  P(x) = x81 + x27 + x9 + x³ + x  на
  a)  x – 1;
  б)  x² – 1.

Прислать комментарий     Решение

Задача 60987

Темы:   [ Разложение на множители ]
[ Теорема Безу. Разложение на множители ]
Сложность: 3+
Классы: 7,8,9,10

Докажите, что многочлен  a³(b² – c²) + b³(c² – a²) + c³(a² – b²)  делится на  (b – c)(c – a)(a – b).

Прислать комментарий     Решение

Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 57]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .