ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 7 задач
Версия для печати
Убрать все задачи

В треугольнике ABC биссектриса, проведённая из вершины A, высота, проведённая из вершины B, и серединный перпендикуляр к стороне AB пересекаются в одной точке. Найдите угол при вершине A.

Вниз   Решение


Продолжения сторон AD и BC выпуклого четырёхугольника ABCD пересекаются в точке M, а продолжения сторон AB и CD – в точке O. Отрезок MO перпендикулярен биссектрисе угла AOD. Найдите отношение площадей треугольников AOD и BOC, если  OA = 6,  OD = 4,  CD = 1.

ВверхВниз   Решение


Докажите, что если плоскость разбита на части прямыми и окружностями, то получившуюся карту можно раскрасить в два цвета так, что части, граничащие по дуге или отрезку, будут разного цвета.

ВверхВниз   Решение


Угол наклона всех боковых граней пирамиды SABC к основанию одинаков и равен arctg . Основанием пирамиды является прямоугольный треугольник ABC ( ACB = 90o ); SO – высота пирамиды. Найдите боковую поверхность пирамиды, если OB = , а радиус вписанной в треугольник ABC окружности равен 1.

ВверхВниз   Решение


Автор: Перлин А.

Квадратный трёхчлен  f(x) разрешается заменить на один из трёхчленов      или     Можно ли с помощью таких операций из квадратного трёхчлена  x² + 4x + 3  получить трёхчлен  x² + 10x + 9?

ВверхВниз   Решение


Пишется наудачу некоторое двузначное число. Какова вероятность того, что сумма цифр этого числа равна 5?

ВверхВниз   Решение


Из каждой вершины выпуклого многогранника выходят ровно три ребра, причём хотя бы два из этих трёх рёбер равны.
Докажите, что многогранник имеет хотя бы три равных ребра.

Вверх   Решение

Задачи

Страница: 1 2 3 4 5 6 7 >> [Всего задач: 80]      



Задача 64885

Темы:   [ Многогранники и многоугольники (прочее) ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3
Классы: 10,11

Существует ли выпуклый многогранник, у которого есть диагонали и каждая диагональ меньше любого ребра?

Прислать комментарий     Решение

Задача 78779

Темы:   [ Пространственные многоугольники ]
[ Сферы (прочее) ]
[ Теорема о длинах касательной и секущей; произведение всей секущей на ее внешнюю часть ]
Сложность: 3
Классы: 11

Дана замкнутая пространственная ломаная с вершинами A1, A2, ..., An, причём каждое звено пересекает фиксированную сферу в двух точках, а все вершины ломаной лежат вне сферы. Эти точки делят ломаную на 3n отрезков. Известно, что отрезки, прилегающие к вершине A1, равны между собой. То же самое верно и для вершин A2, A3, ..., An - 1. Доказать, что отрезки, прилегающие к вершине An, также равны между собой.
Прислать комментарий     Решение


Задача 116268

Темы:   [ Многогранники и многоугольники (прочее) ]
[ Принцип крайнего (прочее) ]
[ Две пары подобных треугольников ]
Сложность: 3
Классы: 8,9,10,11

Грани выпуклого многогранника – подобные треугольники.
Докажите, что многогранник имеет две пары равных граней (одну пару равных граней и еще одну пару равных граней).

Прислать комментарий     Решение

Задача 116712

Темы:   [ Многогранники и многоугольники (прочее) ]
[ Комбинаторная геометрия (прочее) ]
[ Доказательство от противного ]
Сложность: 3
Классы: 10,11

Из каждой вершины выпуклого многогранника выходят ровно три ребра, причём хотя бы два из этих трёх рёбер равны.
Докажите, что многогранник имеет хотя бы три равных ребра.

Прислать комментарий     Решение

Задача 116893

Темы:   [ Многогранники и многоугольники (прочее) ]
[ Четырехугольная пирамида ]
[ Четность и нечетность ]
Сложность: 3
Классы: 10,11

Автор: Фольклор

Какое наибольшее количество треугольных граней может иметь пятигранник?

Прислать комментарий     Решение

Страница: 1 2 3 4 5 6 7 >> [Всего задач: 80]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .