|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Версия для печати
Убрать все задачи Даны натуральные числа n и k, n > 1. Напечатать k десятичных знаков числа 1/n. (При наличии двух десятичных разложений выбирается то из них, которое не содержит девятки в периоде.) Программа должна использовать только целые переменные. Выполните построения с помощью линейки с двумя параллельными краями (двусторонней линейки) без циркуля. а) Постройте биссектрису данного угла AOB. б) Дан острый угол AOB. Постройте угол BOC, биссектрисой которого является луч OA. Доказать: если стороны треугольника образуют арифметическую прогрессию, то радиус вписанного круга равен Доказать, что если целое n > 1, то 11·2²·3³·...·nn < nn(n+1)/2. На катетах прямоугольного треугольника ABC с прямым углом C вовне построили квадраты ACKL и BCMN; CE – высота треугольника. Докажите, что угол LEM прямой. |
Страница: 1 2 3 4 >> [Всего задач: 17]
На диагонали BD вписанного четырёхугольника ABCD выбрана такая точка K, что ∠AKB = ∠ADC. Пусть I и I' – центры вписанных окружностей треугольников ACD и ABK соответственно. Отрезки II' и BD пересекаются в точке X. Докажите, что точки A, X, I, D лежат на одной окружности.
Дана окружность с центром в начале координат.
На катетах прямоугольного треугольника ABC с прямым углом C вовне построили квадраты ACKL и BCMN; CE – высота треугольника. Докажите, что угол LEM прямой.
Страница: 1 2 3 4 >> [Всего задач: 17] |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|