|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Версия для печати
Убрать все задачи Имеется три кучки камней: в первой – 50, во второй – 60, в третьей – 70. Ход состоит в разбиении каждой кучки, состоящей более чем из одного камня, на две меньшие кучки. Выигрывает тот, после чьего хода во всех кучках будет по одному камню. Докажите, что если в выражении (x² – x + 1)2014 раскрыть скобки и привести подобные слагаемые, то какой-нибудь коэффициент полученного многочлена будет отрицательным. На диагонали BD вписанного четырёхугольника ABCD выбрана такая точка K, что ∠AKB = ∠ADC. Пусть I и I' – центры вписанных окружностей треугольников ACD и ABK соответственно. Отрезки II' и BD пересекаются в точке X. Докажите, что точки A, X, I, D лежат на одной окружности. |
Страница: 1 2 3 4 >> [Всего задач: 17]
На диагонали BD вписанного четырёхугольника ABCD выбрана такая точка K, что ∠AKB = ∠ADC. Пусть I и I' – центры вписанных окружностей треугольников ACD и ABK соответственно. Отрезки II' и BD пересекаются в точке X. Докажите, что точки A, X, I, D лежат на одной окружности.
Дана окружность с центром в начале координат.
На катетах прямоугольного треугольника ABC с прямым углом C вовне построили квадраты ACKL и BCMN; CE – высота треугольника. Докажите, что угол LEM прямой.
Страница: 1 2 3 4 >> [Всего задач: 17] |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|