|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Версия для печати
Убрать все задачи Вася в течение 10 дней решал задачи — каждый день хотя бы одну. Каждый день (кроме первого), если погода была пасмурная, то он решал на одну задачу больше, чем в предыдущий день, а если солнечная — на одну задачу меньше. За первые 9 дней Вася решил 13 задач. Какая погода была на десятый день? Пусть Ω' – окружность, гомотетичная с коэффициентом ½ вписанной окружности ω треугольника относительно точки Нагеля, а Ω – окружность, гомотетичная окружности ω Рассмотрим степени пятерки: 1, 5, 25, 125, 625, ... Образуем последовательность их первых цифр: 1, 5, 2, 1, 6, ... Окружность с центром O вписана в четырёхугольник ABCD и касается его непараллельных сторон BC и AD в точках E и F соответственно. Пусть прямая AO и отрезок EF пересекаются в точке K , прямая DO и отрезок EF – в точке N , а прямые BK и CN – в точке M . Докажите, что точки O , K , M и N лежат на одной окружности. Пусть a, b, c, d, e и f – некоторые числа, причём ace ≠ 0. Известно, что значения выражений |ax + b| + |cx + d| и |ex + f | равны при всех значениях x. |
Страница: 1 2 3 >> [Всего задач: 13]
| x + 1| - | x| + 3| x - 1| - 2| x - 2| = x + 2.
Даны три приведённых квадратных трехчлена: P1(x), P2(x) и P3(x). Докажите, что уравнение |P1(x)| + |P2(x)| = |P3(x)| имеет не более восьми корней.
где a1 , a2 , a50 , b1 , b2 , b50 – различные числа?
Пусть a, b, c, d, e и f – некоторые числа, причём ace ≠ 0. Известно, что значения выражений |ax + b| + |cx + d| и |ex + f | равны при всех значениях x.
Страница: 1 2 3 >> [Всего задач: 13] |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|