ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 3 задачи
Версия для печати
Убрать все задачи

Автор: Жуков Г.

По кругу записывают 2015 натуральных чисел так, чтобы каждые два соседних числа различались на их наибольший общий делитель.
Найдите наибольшее натуральное N, на которое гарантированно будет делиться произведение этих 2015 чисел.

Вниз   Решение


В выпуклом четырёхугольнике ABCD известно, что AB = BC = CD, M — точка пересечения диагоналей, K — точка точка пересечения биссектрис углов A и D. Докажите, что точки A, M, K и D лежат на одной окружности.

ВверхВниз   Решение


Пусть BM – медиана остроугольного треугольника ABC. Касательная в точке A к описанной окружности треугольника ABM, и касательная в точке C к описанной окружности треугольника BCM, пересекаются в точке D. Докажите, что точка K, симметричная точке D относительно прямой AC лежит на прямой BM.

Вверх   Решение

Задачи

Страница: << 28 29 30 31 32 33 34 >> [Всего задач: 519]      



Задача 108227

Темы:   [ Вспомогательные подобные треугольники ]
[ Описанные четырехугольники ]
[ Подобные фигуры ]
[ Удвоение медианы ]
[ Углы между биссектрисами ]
[ Признаки и свойства параллелограмма ]
[ Параллелограмм Вариньона ]
[ Три точки, лежащие на одной прямой ]
Сложность: 4
Классы: 9,10,11

Четырёхугольник ABCD с попарно непараллельными сторонами описан около окружности с центром O. Докажите, что точка O совпадает с точкой пересечения средних линий четырёхугольника ABCD тогда и только тогда, когда  OA·OC = OB·OD.

Прислать комментарий     Решение

Задача 108907

Темы:   [ Вспомогательные подобные треугольники ]
[ Симметрия помогает решить задачу ]
[ Вписанные четырехугольники (прочее) ]
[ Три точки, лежащие на одной прямой ]
[ Угол между касательной и хордой ]
Сложность: 4
Классы: 8,9

Пусть BM – медиана остроугольного треугольника ABC. Касательная в точке A к описанной окружности треугольника ABM, и касательная в точке C к описанной окружности треугольника BCM, пересекаются в точке D. Докажите, что точка K, симметричная точке D относительно прямой AC лежит на прямой BM.

Прислать комментарий     Решение

Задача 108940

Темы:   [ Вспомогательные подобные треугольники ]
[ Средняя линия треугольника ]
[ Признаки и свойства равнобедренного треугольника. ]
[ Две пары подобных треугольников ]
Сложность: 4
Классы: 8,9

Точка D лежит на основании AC равнобедренного треугольника ABC. Точки E и F таковы, что середина отрезка DE лежит на стороне AB, середина отрезка DF лежит на стороне BC и  EDA = ∠FDC.  Середина K отрезка EF лежит внутри треугольника ABC. Докажите, что  ∠ABD = ∠CBK.

Прислать комментарий     Решение

Задача 115311

Темы:   [ Вспомогательные подобные треугольники ]
[ Признаки и свойства равнобедренного треугольника. ]
Сложность: 4
Классы: 8,9

AL – биссектриса треугольника ABC, причём  AL = LB.  На луче AL отложен отрезок AK, равный CL. Докажите, что  AK = CK.

Прислать комментарий     Решение

Задача 115312

Темы:   [ Вспомогательные подобные треугольники ]
[ Признаки и свойства равнобедренного треугольника. ]
Сложность: 4
Классы: 8,9

В треугольнике ABC угол A в 2 раза больше угла B, AL – биссектриса треугольника. На луче AL отложен отрезок AK, равный CL.
Докажите, что  AK = CK.

Прислать комментарий     Решение

Страница: << 28 29 30 31 32 33 34 >> [Всего задач: 519]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .