|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Версия для печати
Убрать все задачи а) 2000 фишек расположены на плоскости в вершинах выпуклого 2000-угольника. За один ход можно разбить их на две группы и фишки первой группы сдвинуть на какой-нибудь вектор, а остальные фишки оставить на месте. Может ли случиться, что после 9 ходов все фишки окажутся на одной прямой? б) А после 10 ходов? Даны точки A(- 6; - 1), B(1;2) и C(- 3; - 2). Найдите координаты вершины M параллелограмма ABMC.
|
Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 113]
Даны точки A(- 2;1), B(2;5) и C(4; - 1). Точка D лежит на продолжении медианы AM за точку M, причём четырёхугольник ABDC — параллелограмм. Найдите координаты точки D.
Даны точки A(0;0), B(4;0) и C(0;6). Составьте уравнение окружности, описанной около треугольника ABC.
Докажите, что прямые y = k1x + l1 и y = k2x + l2 параллельны тогда и только тогда, когда k1 = k2 и l1 ≠ l2.
Даны точки A(- 6; - 1), B(1;2) и C(- 3; - 2). Найдите координаты вершины M параллелограмма ABMC.
б) Докажите, что площадь треугольника с вершинами в точках (x1, y1), (x2, y2) и (x3, y3) равна
Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 113] |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|