ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 7 задач
Версия для печати
Убрать все задачи

Сумма нескольких не обязательно различных положительных чисел не превосходила 100. Каждое из них заменили на новое следующим образом: сначала прологарифмировали по основанию 10, затем округлили стандартным образом до ближайшего целого числа и, наконец, возвели 10 в найденную целую степень. Могло ли оказаться так, что сумма новых чисел превышает 300?

Вниз   Решение


На сторонах AB и BC треугольника ABC расположены точки M и N соответственно, причём  AM : MB = 3 : 5,  BN : NC = 1 : 4.  Прямые CM и AN пересекаются в точке O. Найдите отношения  OA : ON  и  OM : OC.

ВверхВниз   Решение


С помощью циркуля и линейки разделите данный отрезок на n равных частей.

ВверхВниз   Решение


В ящике 2009 носков – синих и красных. Может ли синих носков быть столько, чтобы вероятность вытащить наудачу два носка одного цвета была равна 0,5?

ВверхВниз   Решение


На окружности взяты точки A, B, C и D. Прямые AB и CD пересекаются в точке M. Докажите, что  AC . AD/AM = BC . BD/BM.

ВверхВниз   Решение


Дан треугольник ABC. Точка A1 симметрична вершине A относительно прямой BC, а точка C1 симметрична вершине C относительно прямой AB.
Докажите, что если точки A1, B и C1 лежат на одной прямой и  C1B = 2A1B,  то угол CA1B – прямой.

ВверхВниз   Решение


Имеется пять звеньев цепи по три кольца в каждом.
Какое наименьшее число колец нужно расковать и сковать, чтобы соединить эти звенья в одну цепь?

Вверх   Решение

Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 1041]      



Задача 116084

Темы:   [ Примеры и контрпримеры. Конструкции ]
[ Четырехугольники (прочее) ]
Сложность: 2+
Классы: 10,11

Существуют ли два таких четырехугольника, что стороны первого меньше соответствующих сторон второго, а соответствующие диагонали больше?
Прислать комментарий     Решение


Задача 116220

Темы:   [ Примеры и контрпримеры. Конструкции ]
[ Арифметическая прогрессия ]
Сложность: 2+
Классы: 10,11

Существует ли арифметическая прогрессия из 2011 натуральных чисел, в которой количество чисел, делящихся на 8, меньше, чем количество чисел, делящихся на 9, а последнее, в свою очередь, меньше, чем количество чисел, делящихся на 10?

Прислать комментарий     Решение

Задача 103006

Тема:   [ Примеры и контрпримеры. Конструкции ]
Сложность: 3-
Классы: 5,6,7

Имеется пять звеньев цепи по три кольца в каждом.
Какое наименьшее число колец нужно расковать и сковать, чтобы соединить эти звенья в одну цепь?

Прислать комментарий     Решение

Задача 105049

Темы:   [ Примеры и контрпримеры. Конструкции ]
[ Тождественные преобразования ]
Сложность: 3-
Классы: 7,8,9

Найдите какие-нибудь четыре попарно различных натуральных числа a, b, c, d, для которых числа  a² + 2cd + b²  и  c² + 2ab + d²  являются полными квадратами.

Прислать комментарий     Решение

Задача 111239

Темы:   [ Примеры и контрпримеры. Конструкции ]
[ Уравнения в целых числах ]
Сложность: 3-
Классы: 7,8,9

Существуют ли натуральные числа m и n, для которых верно равенство:  (–2anbn)m + (3ambm)n = a6b6 ?

Прислать комментарий     Решение

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 1041]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .