ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 3 задачи
Версия для печати
Убрать все задачи

У математика есть набор из 16 гирь: 1/3 кг, 1/4 кг, 1/5 кг, ..., 1/18 кг. На левой чаше весов лежит груз 1 кг. Какие гири положить на правую чашу весов, чтобы уравновесить груз? (Достаточно привести один пример.)

Вниз   Решение


Меньшая сторона прямоугольника равна 1, острый угол между диагоналями равен 60o. Найдите радиус окружности, описанной около прямоугольника.

ВверхВниз   Решение


а) Может ли число, составленное только из четвёрок, делиться на число, составленное только из троек?
б) А наоборот?

Вверх   Решение

Задачи

Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 502]      



Задача 102835

Темы:   [ Десятичная система счисления ]
[ Арифметика. Устный счет и т.п. ]
Сложность: 2
Классы: 5,6,7

Сколько нулей, единиц, троек? Подряд выписаны все целые числа от 1 до 100. Сколько раз в этой записи встречаются цифры: а) нуль? б) единица; в)три?
Прислать комментарий     Решение


Задача 102836

Темы:   [ Десятичная система счисления ]
[ Текстовые задачи ]
Сложность: 2
Классы: 7

Трехзначное число. Трехзначное число начинается с цифры 4. Если эту цифру перенести в конец числа, то получится число, составляющее 0,75 исходного. Найти исходное число.
Прислать комментарий     Решение


Задача 102973

Темы:   [ Десятичная система счисления ]
[ Признаки делимости на 5 и 10 ]
Сложность: 2
Классы: 5,6

Попробуйте найти все натуральные числа, которые больше своей последней цифры в 5 раз.

Прислать комментарий     Решение

Задача 102980

Темы:   [ Десятичная система счисления ]
[ Лингвистика ]
[ Перебор случаев ]
Сложность: 2
Классы: 5,6

Одно трехзначное число состоит из различных цифр, следующих в порядке возрастания, а в его названии все слова начинаются с одной и той же буквы. Другое трехзначное число, наоборот, состоит из одинаковых цифр, но в его названии все слова начинаются с разных букв. Какие это числа?
Прислать комментарий     Решение


Задача 102991

Темы:   [ Десятичная система счисления ]
[ Признаки делимости на 2 и 4 ]
[ Признаки делимости на 3 и 9 ]
Сложность: 2
Классы: 5,6

а) Может ли число, составленное только из четвёрок, делиться на число, составленное только из троек?
б) А наоборот?

Прислать комментарий     Решение

Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 502]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .