|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Версия для печати
Убрать все задачи Три шара радиусов 1, 3 и 4 расположены так, что каждый из них касается двух других шаров и двух данных плоскостей. Найдите расстояние между точками касания первого из этих шаров с плоскостями. Теорема косинусов для тетраэдра.}Квадрат площади каждой грани тетраэдра равен сумме квадратов площадей трёх остальных граней без удвоенных попарных произведений площадей этих граней на косинусы двугранных углов между ними, т.е. Как надо расположить в пространстве прямоугольный параллелепипед, чтобы площадь его проекции на горизонтальную плоскость была наибольшей? Сторона основания ABC пирамиды TABC равна 4, боковое ребро TA перпендикулярно плоскости основания. Найдите площадь сечения пирамиды плоскостью, проходящей через середины рёбер AC и BT параллельно медиане BD грани BCT , если известно, что расстояние от вершины T до этой плоскости равно Ортогональной проекцией тетраэдра на плоскость одной из его граней является трапеция площади 1. Может ли ортогональной проекцией этого тетраэдра на плоскость другой его грани быть квадрат площади 1? В треугольнике ABC даны длины сторон AB = |
Страница: << 6 7 8 9 10 11 12 >> [Всего задач: 449]
Точки M и N лежат на сторонах соответственно AD и BC ромба
ABCD, причём
DM : AM = BN : NC = 2 : 1. Найдите MN, если известно, что
сторона ромба равна a, а
Около четырёхугольника ABCD можно описать окружность. Кроме того, AB = 3, BC = 4, CD = 5 и AD = 2. Найдите AC.
Страница: << 6 7 8 9 10 11 12 >> [Всего задач: 449] |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|