|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Версия для печати
Убрать все задачи Игра в "супершахматы" ведётся на доске размером 100×100, и в ней участвует 20 различных фигур, каждая из которых ходит по своим правилам. Известно, что любая фигура с любого места бьет не более 20 полей (но больше о правилах ничего не сказано, например, если фигуру А передвинуть, то о том, как изменится множество битых полей мы ничего не знаем). Докажите, что можно расставить на доске все 20 фигур так, чтобы ни одна из них не била другую. В треугольнике KLM взяты точка A на стороне LM, а точка
B – на стороне KM. Отрезки KA и LB пересекаются в точке O, LA : AM = 3 : 4, KO : OA = 3 : 2. Берутся всевозможные непустые подмножества из множества чисел 1, 2, 3, ..., n. Для каждого подмножества берётся величина, обратная к произведению всех его чисел. Найти сумму всех таких обратных величин. |
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 121]
Найдите последние две цифры в десятичной записи числа 1! + 2! + ... + 2001! + 2002!.
Цифры 1, 2, ..., 9 разбили на три группы. Докажите, что произведение чисел в одной из групп не меньше 72.
Верно ли, что любое положительное чётное число можно представить в виде произведения целых чисел, сумма которых равна нулю?
Доказать, что при натуральном n число nm + 1 будет составным хотя бы для одного натурального m.
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 121] |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|