ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 4 задачи
Версия для печати
Убрать все задачи

Точка M делит сторону BC треугольника ABC в отношении BM : MC = 2 : 5, Известно, что $ \overrightarrow{AB} $ = $ \overrightarrow{a}$, $ \overrightarrow{AC} $ = $ \overrightarrow{b}$. Найдите вектор $ \overrightarrow{AM}$.

Вниз   Решение


За два года завод снизил объём выпускаемой продукции на 51%. При этом каждый год объём выпускаемой продукции снижался на одно и то же число процентов. На сколько?

ВверхВниз   Решение


Пусть M — середина отрезка AB, O — произвольная точка. Докажите, что $ \overrightarrow{OM} $ = $ {\frac{1}{2}}$($ \overrightarrow{OA} $ + $ \overrightarrow{OB} $).

ВверхВниз   Решение


Пусть AA1, BB1, CC1 — медианы треугольника ABC. Докажите, что $ \overrightarrow{AA}_{1}^{}$ + $ \overrightarrow{BB}_{1}^{}$ + $ \overrightarrow{CC}_{1}^{}$ = $ \overrightarrow{0}$

Вверх   Решение

Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 234]      



Задача 35373

Тема:   [ Рекуррентные соотношения ]
Сложность: 3
Классы: 9,10,11

Дана последовательность чисел x1, x2, ... . Известно, что 0<x1<1 и xk+1=xk-xk2 для всех k>1. Докажите, что x12+x22+...+xn2<1 для любого n>1.
Прислать комментарий     Решение


Задача 35468

Тема:   [ Числа Фибоначчи ]
Сложность: 3
Классы: 8,9

Найдите количество слов длины 10, состоящих только из букв "а" и "б" и не содержащих в записи двух букв "б" подряд.
Прислать комментарий     Решение


Задача 60560

 [Задача Леонардо Пизанского]
Тема:   [ Числа Фибоначчи ]
Сложность: 3
Классы: 8,9

Некто приобрел пару кроликов и поместил их в огороженный со всех сторон загон. Сколько кроликов будет через год, если считать, что каждый месяц пара дает в качестве приплода новую пару кроликов, которые со второго месяца жизни также начинают приносить приплод?

Прислать комментарий     Решение

Задача 60564

 [Тождество Кассини]
Темы:   [ Числа Фибоначчи ]
[ Индукция (прочее) ]
Сложность: 3
Классы: 8,9,10,11

Тождество Кассини. Докажите равенство

Fn + 1Fn - 1 - Fn2 = (- 1)n        (n > 0).


Будет ли тождество Кассини справедливо для всех целых n?

Прислать комментарий     Решение

Задача 60583

Тема:   [ Числа Фибоначчи ]
Сложность: 3
Классы: 8,9,10,11

Сколько существует последовательностей из единиц и двоек, сумма всех элементов которых равна n? Например, если  n = 4,  то таких последовательностей пять: 1111,  112,  121,  211,  22.

Прислать комментарий     Решение

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 234]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .