ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 2 задачи
Версия для печати
Убрать все задачи

Многоугольник описан около окружности радиуса r. Докажите, что его площадь равна pr, где p — полупериметр многоугольника.

Вниз   Решение


На плоскости отмечены четыре точки. Докажите, что их можно разбить на две группы так, что эти группы точек нельзя будет отделить одну от другой никакой прямой.

Вверх   Решение

Задачи

Страница: 1 2 3 4 5 6 7 >> [Всего задач: 31]      



Задача 57304

Тема:   [ Неравенства с медианами ]
Сложность: 2
Классы: 8

Докажите, что  (a + b - c)/2 < mc < (a + b)/2, где a, b и c - длины сторон произвольного треугольника, mc - медиана к стороне c.
Прислать комментарий     Решение


Задача 57409

Тема:   [ Неравенства с медианами ]
Сложность: 2+
Классы: 8,9

Докажите, что если a > b, то ma < mb.
Прислать комментарий     Решение


Задача 57305

Тема:   [ Неравенства с медианами ]
Сложность: 3
Классы: 8

Докажите, что в любом треугольнике сумма медиан больше 3/4 периметра, но меньше периметра.
Прислать комментарий     Решение


Задача 57306

Тема:   [ Неравенства с медианами ]
Сложность: 3
Классы: 8

Даны n точек  A1,..., An и окружность радиуса 1. Докажите, что на окружности можно выбрать точку M так, что  MA1 + ... + MAn $ \geq$ n.
Прислать комментарий     Решение


Задача 57410

Тема:   [ Неравенства с медианами ]
Сложность: 3
Классы: 8,9

Медианы AA1 и BB1 треугольника ABC пересекаются в точке M. Докажите, что если четырехугольник A1MB1C описанный, то AC = BC.
Прислать комментарий     Решение


Страница: 1 2 3 4 5 6 7 >> [Всего задач: 31]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .