ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

20 футбольных команд проводят первенство. В первый день все команды сыграли по одной игре. Во второй также все команды сыграли по одной игре.
Докажите, что после второго дня можно указать такие 10 команд, что никакие две из них не играли друг с другом.

   Решение

Задачи

Страница: << 4 5 6 7 8 9 10 >> [Всего задач: 2404]      



Задача 34949

Тема:   [ Стереометрия (прочее) ]
Сложность: 3
Классы: 10,11

Через каждую вершину тетраэдра проведена плоскость, содержащая центр окружности, описанной около противоположной грани, и перпендикулярная противоположной грани. Докажите, что эти 4 плоскости пересекаются в одной точке.
Прислать комментарий     Решение


Задача 35087

Тема:   [ Стереометрия (прочее) ]
Сложность: 3
Классы: 9,10,11

Известно, что сумма трех плоских углов при каждой вершине тетраэдра равна 1800. Докажите, что все его грани - равные треугольники.
Прислать комментарий     Решение


Задача 35119

Тема:   [ Наглядная геометрия в пространстве ]
Сложность: 3
Классы: 6,7,8,9

Студенты кафедры высшей геометрии и топологии, находясь летом на отдыхе, разрезали арбуз на 4 части и съели. Могло ли получиться 5 корок?
Прислать комментарий     Решение


Задача 35159

Темы:   [ Стереометрия (прочее) ]
[ Разрезания на части, обладающие специальными свойствами ]
Сложность: 3
Классы: 8,9,10,11

Разбейте куб на три пирамиды.
Прислать комментарий     Решение


Задача 35556

Темы:   [ Стереометрия (прочее) ]
[ Скалярное произведение. Соотношения ]
Сложность: 3
Классы: 10,11

Известно, что в тетраэдре две пары скрещивающихся ребер перепндикулярны. Докажите, что и третья пара скрещивающихся ребер обладает этим свойством.
Прислать комментарий     Решение


Страница: << 4 5 6 7 8 9 10 >> [Всего задач: 2404]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .