ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 2 задачи
Версия для печати
Убрать все задачи

Сторона основания ABCD правильной призмы ABCDA1B1C1D1 равна 2a , боковое ребро – a . Рассматриваются отрезки с концами на диагонали AD1 грани AA1D1D и диагонали DB1 призмы, параллельные плоскости AA1B1B . а) Один из таких отрезков проведён через точку M диагонали AD1 , для которой AM:AD1 = 2:3 . Найдите его длину. б) Найдите наименьшую длину всех рассматриваемых отрезков.

Вниз   Решение


На сторонах AB и BC остроугольного треугольника ABC внешним образом построены квадраты ABC1D1 и A2BCD2.
Докажите, что точка пересечения прямых AD2 и CD1 лежит на высоте BH.

Вверх   Решение

Задачи

Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 159]      



Задача 67219

Темы:   [ Центральная симметрия (прочее) ]
[ Четность и нечетность ]
[ Топология (прочее) ]
Сложность: 3+
Классы: 8,9,10,11

Замкнутая, возможно, самопересекающаяся ломаная симметрична относительно не лежащей на ней точки $O$. Докажите, что число оборотов ломаной вокруг $O$ нечётно. (Числом оборотов вокруг $O$ называется сумма ориентированных углов $$\angle A_1OA_2+\angle A_2OA_3+\ldots+\angle A_{n-1}OA_n+\angle A_nOA_1,$$ делённая на $2\pi$.)
Прислать комментарий     Решение


Задача 55712

Тема:   [ Центральная симметрия помогает решить задачу ]
Сложность: 3+
Классы: 8,9

С помощью циркуля и линейки проведите через общую точку A окружностей S1 и S2 прямую так, чтобы эти окружности высекали на ней равные хорды.

Прислать комментарий     Решение


Задача 78076

Темы:   [ Центральная симметрия помогает решить задачу ]
[ Ортоцентр и ортотреугольник ]
Сложность: 3+
Классы: 8,9

Точка O — центр круга, описанного около треугольника ABC. Точки A1, B1 и C1 симметричны точке O относительно сторон треугольника ABC. Докажите, что все высоты треугольника A1B1C1 проходят через точку O, а все высоты треугольника ABC проходят через центр круга, описанного около треугольника A1B1C1.
Прислать комментарий     Решение


Задача 55713

Темы:   [ Центральная симметрия помогает решить задачу ]
[ Площадь фигуры равна сумме площадей фигур, на которые она разбита ]
Сложность: 3+
Классы: 8,9

Пусть P - середина стороны AB выпуклого четырехугольника ABCD. Докажите, что если площадь треугольника PDC равна половине площади четырехугольника ABCD, то стороны BC и AD параллельны.

Прислать комментарий     Решение


Задача 55626

Темы:   [ Свойства симметрии и центра симметрии ]
[ Метод координат на плоскости ]
Сложность: 4-
Классы: 8,9

Фигура имеет две перпендикулярные оси симметрии. Верно ли, что она имеет центр симметрии?

Прислать комментарий     Решение


Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 159]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .