|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Версия для печати
Убрать все задачи Решите уравнение
(x2 + x)2 +
Опишите явный вид многочлена f(x) = f1(x) + f2(x) + ... + fn(x), где fi(x) – многочлены из задачи 61050. Существуют ли такое натуральное $n$ и такой многочлен $P(x)$ степени $n$, имеющий $n$ различных действительных корней, что при всех действительных $x$ выполнено равенство а) $P(x)P(x+1)=P(x^2)$; б) $P(x)P(x+1)=P(x^2+1)$? Точки A, B, C и D последовательно расположены на окружности, причём центр O окружности расположен внутри четырёхугольника ABCD. Точки K, L, M и N – середины отрезков AB, BC, CD и AD соответственно. Докажите, что ∠KON + ∠MOL = 180°. |
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 161]
Какое максимальное число ферзей, не бьющих друг друга, можно расставить на шахматной доске 8×8?
В некоторых клетках шахматной доски стоят фигуры. Известно, что на каждой горизонтали стоит хотя бы одна фигура, причём в разных горизонталях – разное число фигур. Докажите, что всегда можно отметить 8 фигур так, чтобы в каждой вертикали и каждой горизонтали стояла ровно одна отмеченная фигура.
Какое наибольшее число пешек можно поставить на шахматную доску (не более одной пешки на каждое поле), если:
Дан куб 4×4×4. Расставьте в нем 16 ладей так, чтобы они не били друг друга.
Дана шахматная доска. Разрешается перекрашивать в другой цвет сразу все клетки какой-либо горизонтали или вертикали.
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 161] |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|