|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Подтемы:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||
|
Версия для печати
Убрать все задачи Школьник хочет вырезать из квадрата размером 2n×2n наибольшее количество прямоугольников размером 1×(n + 1). Найти это количество для каждого натурального значения n. Сравните числа: А = 2011·20122012·201320132013 и В = 2013·20112011·201220122012. |
Страница: 1 2 3 4 5 6 7 >> [Всего задач: 47]
Пусть z1 и z2 – фиксированные точки
комплексной плоскости. Дайте геометрическое описание множеств всех точек z, удовлетворяющих соотношениям:
Дайте геометрическую интерпретацию следующих неравенств:
Найдите min |3 + 2i – z| при |z| ≤ 1.
Запишите с помощью неравенств следующие множества точек на комплексной плоскости:
z2, z1, z0 лежат на одной прямой тогда и только тогда, когда
Страница: 1 2 3 4 5 6 7 >> [Всего задач: 47] |
||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|