|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Версия для печати
Убрать все задачи Докажите, что числа а) 232001 + 1; б) 232001 – 1 – составные. Деревянный куб покрасили снаружи белой краской, каждое его ребро разделили на 5 равных частей, после чего куб распилили так, что получились маленькие кубики, у которых ребро в 5 раз меньше, чем у исходного куба. Сколько получилось маленьких кубиков, у которых окрашена хотя бы одна грань? Может ли в государстве, в котором из каждого города выходит три дороги, быть ровно 100 дорог? Существует ли выпуклый 1978-угольник, у которого все углы выражаются целым числом градусов? Докажите, что См. задачу 4 для 8 класса. Кроме того, доказать, что если длины отрезков a1,..., a6 удовлетворяют соотношениям: a1 - a4 = a5 - a2 = a3 - a6, то из этих отрезков можно построить равноугольный шестиугольник. |
Страница: 1 2 3 4 5 6 7 >> [Всего задач: 157]
а) Сколькими способами Дима сможет покрасить пять ёлок в серебристый, зеленый и синий цвета, если количество краски у него неограничено, а каждую ёлку он красит только в один цвет?
Монету бросают трижды. Сколько разных последовательностей орлов и решек можно при этом получить?
Каждую клетку квадратной таблицы 2×2 можно покрасить в чёрный или белый цвет. Сколько существует различных раскрасок этой таблицы?
Сколькими способами можно заполнить одну карточку в лотерее "Спортпрогноз"? (В этой лотерее нужно предсказать итог тринадцати спортивных матчей. Итог каждого матча – победа одной из команд либо ничья; счёт роли не играет).
В футбольной команде (11 человек) нужно выбрать капитана и его заместителя. Сколькими способами это можно сделать?
Страница: 1 2 3 4 5 6 7 >> [Всего задач: 157] |
|||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|