|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Версия для печати
Убрать все задачи Три окружности попарно касаются друг друга. Через три точки касания проводим окружность. Доказать, что эта окружность перпендикулярна к каждой из трёх исходных. (Углом между двумя окружностями в точке их пересечения называется угол, образованный их касательными в этой точке.) |
Страница: 1 2 3 4 5 6 7 >> [Всего задач: 129]
В трапеции ABCD (AD || BC) из точки Е – середины CD провели перпендикуляр EF к прямой AB. Найдите площадь трапеции, если АВ = 5, EF = 4.
Проекция диагонали равнобедренной трапеции на её большее основание равна a, боковая сторона равна b. Найдите площадь трапеции, если угол при её меньшем основании равен 150o.
Докажите, что прямая, проходящая через середины оснований трапеции, разбивает её на две равновеликие части.
Основания равнобедренной трапеции равны a и b (a > b), острый угол равен 45o. Найдите площадь трапеции.
Страница: 1 2 3 4 5 6 7 >> [Всего задач: 129] |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|