ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 6 задач
Версия для печати
Убрать все задачи

Докажите, что при  x ∈ (0, π/2)  выполняется неравенство  

Вниз   Решение


Окружность, построенная на высоте AD прямоугольного треугольника ABC как на диаметре, пересекает катет AB в точке K, а катет AC — в точке M. Отрезок KM пересекает высоту AD в точке L. Известно, что отрезки AK, AL и AM составляют геометрическую прогрессию (т.е. $ {\frac{AK}{AL}}$ = $ {\frac{AL}{AM}}$). Найдите острые углы треугольника ABC.

ВверхВниз   Решение


Пусть характеристическое уравнение (11.3) последовательности {an} имеет корень x0 кратности 2. Докажите, что при фиксированных a0, a1 существует ровно одна пара чисел c1, c2 такая, что

an = (c1 + c2n)x0n        (n = 0, 1, 2,...).


ВверхВниз   Решение


В трапеции ABCD диагональ AC перпендикулярна боковой стороне CD, а диагональ DB перпендикулярна боковой стороне AB. На продолжениях боковых сторон AB и DC за меньшее основание BC отложены отрезки BM и CN так, что получается новая трапеция BMNC, подобная трапеции ABCD. Найдите площадь трапеции ABCD, если площадь трапеции AMND равна S, а сумма углов CAD и BDA равна 60°.

ВверхВниз   Решение


Докажите, что если длины всех сторон треугольника меньше 1, то его площадь меньше $ \sqrt{3}$/4.

ВверхВниз   Решение


Из горячего крана ванна заполняется за 23 минуты, из холодного – за 17 минут. Маша открыла сначала горячий кран. Через сколько минут она должна открыть холодный, чтобы к моменту наполнения ванны горячей воды налилось в 1,5 раза больше, чем холодной?

Вверх   Решение

Задачи

Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 121]      



Задача 64848

Темы:   [ Произведения и факториалы ]
[ Разбиения на пары и группы; биекции ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3+
Классы: 8,9,10

Можно ли все натуральные делители числа 100! (включая 1 и само число) разбить на две группы так, чтобы в обеих группах было одинаковое количество чисел и произведение чисел первой группы равнялось произведению чисел второй группы?

Прислать комментарий     Решение

Задача 64961

Темы:   [ Произведения и факториалы ]
[ Десятичная система счисления ]
Сложность: 3+
Классы: 9,10,11

Какое наименьшее количество множителей требуется вычеркнуть из числа 99! так, чтобы произведение оставшихся множителей оканчивалось на 2?

Прислать комментарий     Решение

Задача 65089

Темы:   [ Произведения и факториалы ]
[ НОД и НОК. Взаимная простота ]
[ Процессы и операции ]
[ Арифметика остатков (прочее) ]
Сложность: 3+
Классы: 8,9

На доске написано число 1. Если на доске написано число а, его можно заменить любым числом вида  a + d,  где d взаимно просто с а и  10 ≤ d ≤ 20.
Можно ли через несколько таких операций получить на доске число 18! ?

Прислать комментарий     Решение

Задача 66012

Темы:   [ Произведения и факториалы ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3+
Классы: 8,9,10,11

В произведении трёх натуральных чисел каждый сомножитель уменьшили на 3. Могло ли произведение при этом увеличиться ровно на 2016?

Прислать комментарий     Решение

Задача 66018

Темы:   [ Произведения и факториалы ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3+
Классы: 8,9,10,11

В произведении пяти натуральных чисел каждый сомножитель уменьшили на 3. Могло ли произведение при этом увеличиться ровно в 15 раз?

Прислать комментарий     Решение

Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 121]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .