ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 1 2 3 4 5 6 >> [Всего задач: 29]      



Задача 116676  (#5)

Темы:   [ Делимость чисел. Общие свойства ]
[ НОД и НОК. Взаимная простота ]
[ Принцип крайнего (прочее) ]
Сложность: 4+
Классы: 7,8,9

Рациональные числа x, y и z таковы, что все числа  x + y² + z²,  x² + y + z²  и  x² + y² + z  целые. Докажите, что число 2x целое.

Прислать комментарий     Решение

Задача 116688  (#5)

Темы:   [ Вписанные и описанные окружности ]
[ Свойства биссектрис, конкуррентность ]
[ Ортоцентр и ортотреугольник ]
[ ГМТ - окружность или дуга окружности ]
[ Соображения непрерывности ]
Сложность: 5-
Классы: 8,9,10

Дан треугольник ABC. Прямая l касается вписанной в него окружности. Обозначим через la, lb, lc прямые, симметричные l относительно биссектрис внешних углов треугольника. Докажите, что треугольник, образованный этими прямыми, равен треугольнику ABC.

Прислать комментарий     Решение

Задача 116694  (#5)

Темы:   [ Вписанные и описанные окружности ]
[ Ортоцентр и ортотреугольник ]
[ ГМТ - окружность или дуга окружности ]
[ Соображения непрерывности ]
Сложность: 5
Классы: 10

Дан остроугольный треугольник ABC. Для произвольной прямой l обозначим через la, lb, lc прямые, симметричные l относительно сторон треугольника, а через Il – центр вписанной окружности треугольника, образованного этими прямыми. Найдите геометрическое место точек Il.

Прислать комментарий     Решение

Задача 116700  (#5)

Темы:   [ Геометрическая прогрессия ]
[ Индукция (прочее) ]
[ Числовые неравенства. Сравнения чисел. ]
Сложность: 4+
Классы: 11

Для  n = 1, 2, 3  будем называть числом n-го типа любое число, которое либо равно 0, либо входит в бесконечную геометрическую прогрессию
1,  (n + 2),  (n + 2)²,  ..., либо является суммой нескольких различных её членов. Докажите, что любое натуральное число можно представить в виде суммы числа первого типа, числа второго типа и числа третьего типа.

Прислать комментарий     Решение

Задача 116706  (#5)

Темы:   [ Треугольник Паскаля и бином Ньютона ]
[ Простые числа и их свойства ]
[ Произведения и факториалы ]
Сложность: 5-
Классы: 11

Обозначим через  S(n, k)  количество не делящихся на k коэффициентов разложения многочлена  (x + 1)n  по степеням x.
  а) Найдите  S(2012, 3).
  б) Докажите, что  S(20122011, 2011)  делится на 2012.

Прислать комментарий     Решение

Страница: << 1 2 3 4 5 6 >> [Всего задач: 29]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .