ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам | Поиск |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 1 2 3 4 5 [Всего задач: 24]      



Задача 111921  (#5)

Темы:   [ Ортоцентр и ортотреугольник ]
[ Вневписанные окружности ]
[ Ортогональная (прямоугольная) проекция ]
Сложность: 5+
Классы: 8,9,10

Стороны BC и AC треугольника ABC касаются соответствующих вневписанных окружностей в точках A1 , B1 . Пусть A2 , B2 — ортоцентры треугольников CAA1 и CBB1 . Докажите, что прямая A2B2 перпендикулярна биссектрисе угла C .
Прислать комментарий     Решение


Задача 111927  (#5)

Темы:   [ Произведения и факториалы ]
[ Треугольник Паскаля и бином Ньютона ]
[ Простые числа и их свойства ]
[ Основная теорема арифметики. Разложение на простые сомножители ]
[ Разбиения на пары и группы; биекции ]
Сложность: 5-
Классы: 9,10,11

Для каждого простого p найдите наибольшую натуральную степень числа p!, на которую делится число (p²)!.

Прислать комментарий     Решение

Задача 111922  (#6)

Темы:   [ Треугольник Паскаля и бином Ньютона ]
[ НОД и НОК. Взаимная простота ]
[ Сочетания и размещения ]
[ Подсчет двумя способами ]
Сложность: 4
Классы: 8,9,10,11

Автор: Фольклор

Докажите, что при любых натуральных  0 < k < m < n  числа    и    не взаимно просты.

Прислать комментарий     Решение

Задача 111928  (#6)

Темы:   [ Разбиения на пары и группы; биекции ]
[ Связность. Связные множества ]
[ Числовые таблицы и их свойства ]
Сложность: 5
Классы: 9,10,11

Докажите, что при любом разбиении ста "двузначных" чисел 00, 01, ..., 99 на две группы некоторые числа хотя бы одной группы можно записать в ряд так, чтобы каждые два соседних числа этого ряда отличались друг от друга на 1, 10 или 11, и хотя бы в одном из двух разрядов (единиц или десятков) встречались все 10 различных цифр.

Прислать комментарий     Решение

Страница: << 1 2 3 4 5 [Всего задач: 24]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .