ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам | Поиск |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: 1 2 >> [Всего задач: 6]      



Задача 111923  (#1)

Темы:   [ Производная и кратные корни ]
[ Производная и экстремумы ]
Сложность: 3
Классы: 10,11

Когда из бассейна сливают воду, уровень h воды в нём меняется в зависимости от времени t по закону

h(t)=at2+bt+c,

а в момент t0 окончания слива выполнены равенства h(t0)=h'(t0)=0 . За сколько часов вода из бассейна сливается полностью, если за первый час уровень воды в нём уменьшается вдвое?
Прислать комментарий     Решение

Задача 111924  (#2)

Темы:   [ Цилиндр ]
[ Поверхность круглых тел ]
[ Неравенства с площадями ]
Сложность: 4+
Классы: 10,11

Моток ниток проткнули насквозь 72 цилиндрическими спицами радиуса 1 каждая, в результате чего он приобрел форму цилиндра радиуса 6. Могла ли высота этого цилиндра оказаться также равной 6?
Прислать комментарий     Решение


Задача 111925  (#3)

Темы:   [ Графики и ГМТ на координатной плоскости ]
[ Производная и касательная ]
[ Построения с помощью вычислений ]
Сложность: 5-
Классы: 10,11

На плоскости даны оси координат с одинаковым, но не обозначенным масштабом и график функции

y= sin x, x(0).

Как с помощью циркуля и линейки построить касательную к этому графику в заданной его точке, если: а) α() ; б) α(0;) ?
Прислать комментарий     Решение

Задача 111926  (#4)

Темы:   [ Прямые и кривые, делящие фигуры на равновеликие части ]
[ Свойства симметрий и осей симметрии ]
[ Отношение площадей треугольников с общим основанием или общей высотой ]
[ Описанные четырехугольники ]
Сложность: 5-
Классы: 8,9,10

Через каждую вершину четырехугольника проведена прямая, проходящая через центр вписанной в него окружности. Три из этих прямых обладают тем свойством, что каждая из них делит площадь четырехугольника на две равновеликие части.
a) Докажите, что и четвертая прямая обладает тем же свойством.
б) Какие значения могут принимать углы этого четырехугольника, если один из них равен 72o ?
Прислать комментарий     Решение


Задача 111927  (#5)

Темы:   [ Произведения и факториалы ]
[ Треугольник Паскаля и бином Ньютона ]
[ Простые числа и их свойства ]
[ Основная теорема арифметики. Разложение на простые сомножители ]
[ Разбиения на пары и группы; биекции ]
Сложность: 5-
Классы: 9,10,11

Для каждого простого p найдите наибольшую натуральную степень числа p!, на которую делится число (p²)!.

Прислать комментарий     Решение

Страница: 1 2 >> [Всего задач: 6]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .