ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 6 7 8 9 10 11 12 >> [Всего задач: 56]      



Задача 109771  (#02.5.10.6)

Темы:   [ Процессы и операции ]
[ Разбиения на пары и группы; биекции ]
[ Четность и нечетность ]
Сложность: 5-
Классы: 8,9,10

Имеются одна красная и k  (k > 1)  синих ячеек, а также колода из 2n карт, занумерованных числами от 1 до 2n. Первоначально вся колода лежит в произвольном порядке в красной ячейке. Из любой ячейки можно взять верхнюю карту и переложить её либо в пустую ячейку, либо поверх карты с номером, большим на единицу. При каком наибольшем n можно такими операциями переложить всю колоду в одну из синих ячеек?

Прислать комментарий     Решение

Задача 108138  (#02.5.10.7)

Темы:   [ Три прямые, пересекающиеся в одной точке ]
[ Гомотетия помогает решить задачу ]
[ Вневписанные окружности ]
[ Ортоцентр и ортотреугольник ]
[ Центральная симметрия помогает решить задачу ]
[ Конкуррентность высот. Углы между высотами. ]
Сложность: 5-
Классы: 9,10,11

Пусть A' – точка касания вневписанной окружности треугольника ABC со стороной BC. Прямая a проходит через точку A' и параллельна биссектрисе внутреннего угла A. Аналогично строятся прямые b и c. Докажите, что прямые a, b и c пересекаются в одной точке.

Прислать комментарий     Решение

Задача 109765  (#02.5.10.8)

Темы:   [ Три прямые, пересекающиеся в одной точке ]
[ Наименьшая или наибольшая площадь (объем) ]
[ Раскраски ]
Сложность: 5
Классы: 8,9,10

На плоскости взято конечное число красных и синих прямых, среди которых нет параллельных, так, что через каждую точку пересечения одноцветных прямых проходит прямая другого цвета. Докажите, что все прямые проходят через одну точку.

Прислать комментарий     Решение

Задача 109759  (#02.5.11.1)

Темы:   [ Кубические многочлены ]
[ Исследование квадратного трехчлена ]
[ Деление многочленов с остатком. НОД и НОК многочленов ]
Сложность: 4+
Классы: 9,10,11

Многочлены P, Q и R с действительными коэффициентами, среди которых есть многочлен второй степени и многочлен третьей степени, удовлетворяют равенству  P² + Q² = R².  Докажите, что все корни одного из многочленов третьей степени – действительные.

Прислать комментарий     Решение

Задача 109753  (#02.5.11.2)

Темы:   [ Системы точек ]
[ Целочисленные решетки (прочее) ]
[ Скалярное произведение. Соотношения ]
[ Векторы помогают решить задачу ]
[ Рациональные и иррациональные числа ]
Сложность: 5-
Классы: 9,10,11

На плоскости отмечено несколько точек. Для любых трех из них существует декартова система координат (т.е. перпендикулярные оси и общий масштаб), в которой эти точки имеют целые координаты. Докажите, что существует декартова система координат, в которой все отмеченные точки имеют целые координаты.
Прислать комментарий     Решение


Страница: << 6 7 8 9 10 11 12 >> [Всего задач: 56]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .