ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам | Поиск |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 48]      



Задача 109533  (#93.4.11.5)

Темы:   [ Кубические многочлены ]
[ Теорема о промежуточном значении. Связность ]
[ Теория игр (прочее) ]
[ Производная и экстремумы ]
[ Многочлен нечетной степени имеет действительный корень ]
Сложность: 3+
Классы: 9,10,11

На доске написано:  x³ + ...x² + ...x + ... = 0.  Два школьника по очереди вписывают вместо многоточий действительные числа. Цель первого – получить уравнение, имеющее ровно один действительный корень. Сможет ли второй ему помешать?

Прислать комментарий     Решение

Задача 109534  (#93.4.11.6)

Темы:   [ Объем тетраэдра и пирамиды ]
[ Теорема о промежуточном значении. Связность ]
[ Площадь сечения ]
Сложность: 5
Классы: 10,11

Автор: Вавилов В.

Семь треугольных пирамид стоят на столе. Для любых трех из них существует горизонтальная плоскость, которая пересекает их по треугольникам равной площади. Доказать, что существует плоскость, пересекающая все семь пирамид по треугольникам равной площади.
Прислать комментарий     Решение


Задача 108233  (#93.4.11.7)

Темы:   [ ГМТ - окружность или дуга окружности ]
[ Правильный (равносторонний) треугольник ]
[ Вспомогательная окружность ]
[ Вписанный угол, опирающийся на диаметр ]
[ Процессы и операции ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
Сложность: 5+
Классы: 8,9

Автор: Савин А.П.

Дан правильный треугольник ABC . Через вершину B проводится произвольная прямая l , а через точки A и C проводятся прямые, перпендикулярные прямой l , пересекающие её в точках D и E . Затем, если точки D и E различны, строятся правильные треугольники DEP и DET , лежащие по разные стороны от прямой l . Найдите геометрическое место точек P и T .
Прислать комментарий     Решение


Задача 109536  (#93.4.11.8)

Темы:   [ Обход графов ]
[ Разбиения на пары и группы; биекции ]
[ Доказательство от противного ]
[ Принцип Дирихле (прочее) ]
Сложность: 4
Классы: 8,9,10,11

В стране 1993 города, и из каждого выходит не менее 93 дорог. Известно, что из каждого города можно проехать по дорогам в любой другой.
Докажите, что это можно сделать не более, чем с 62 пересадками. (Дорога соединяет между собой два города.)

Прислать комментарий     Решение

Задача 109521  (#93.5.9.1)

Темы:   [ Простые числа и их свойства ]
[ Тождественные преобразования ]
Сложность: 3
Классы: 7,8,9

Натуральное число n таково, что числа  2n + 1  и  3n + 1  являются квадратами. Может ли при этом число  5n + 3  быть простым?

Прислать комментарий     Решение

Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 48]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .